DOI QR코드

DOI QR Code

Study of Separation Mechanism According to the Constraint Condition of Explosive Bolts

폭발볼트의 구속환경에 따른 분리메커니즘 연구

  • Jeong, Donghee (Energetic Material & Pyrotechnics Department, Hanwha Corporation R&D Institute) ;
  • Lee, Youngwoo (Daejeon Center, Defense Agency for Technology and Quality)
  • Received : 2015.12.02
  • Accepted : 2016.03.09
  • Published : 2016.04.01

Abstract

Explosive bolt is one of separation device that uses high explosive charge, and is separated by pressure formed by an explosion and the resulting shock waves. Explosive bolt having such a mechanism would have to be designed to minimize shock and debris formation generated during separation. In this study, separation tests were carried out with distance as variable for restraining the explosive bolt (Air Gap). Bolt release and its separating shape with variation of air gap is observed, and we used accelerometer to measure the shock wave transmitted through a bound object. In addition, separation behavior of explosive bolt is analyzed using ANSYS AUOTODYN program. By comparing the results of previously performed experiments and analysis, we could confirm the effects of air gap to the release behavior of explosive bolt, and decide optimum constraining environment for specific separation bolts.

폭발볼트는 고폭약를 사용하는 분리장치의 하나로서 폭발볼트의 내부에서 형성되는 폭압 및 충격파에 의해 분리된다. 이러한 메커니즘을 갖는 폭발볼트는 분리시 생성되는 충격파 및 파편형성 최소화되도록 설계되어야 할 것이다. 본 연구에서는 폭발볼트 및 볼트를 구속하는 구속물과의 거리(Air gap)을 변수로 두어 분리시험을 수행하였다. 이때 Air gap 따른 분리유무 및 분리 형상을 확인 하였고, 가속도 센서를 이용하여 구속물의 전달되는 Pyro-shock를 측정하였다. 또한 ANSYS Autodyn 프로그램을 이용하여 폭발볼트의 분리거동을 해석하였다. 실험 및 해석으로부터 폭발볼트와 구속물 사이의 Air gap 크기에 따른 폭발볼트의 분리거동에 미치는 영향을 확인하였고 특정 볼트에 한해서 최적의 폭발볼트의 구속환경을 설정하였다.

Keywords

References

  1. Karl O.B., Handbook of Pyrotechnics, Chemical Publishing Co., Inc., New York, N.Y., U.S.A., pp. 119-128. 1974.
  2. Lee, Y.J., "The Interpretation of Separation Mechanism of Ridge-Cut Exploisve Bolt Using Simulation Programs," Journal of the Korean Society of Propulsion Engineers, Vol. 8, No. 2, pp. 102-114. 2001.
  3. Marc A.M., Dynamic Behavior of Materials, John Wiley & Sons Inc., New York, C.O., U.S.A., 1994.
  4. Johnson, G.R. and Cook, W.H., "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures," Proceedings of the Seventh International Symposium on Ballistics, The Hague, Netherlands, pp. 541-547, 1983.
  5. Lee, E.L., Hornig, H.C. and Kury, J.W., "Adiabatic Expansion of High Explosive Detonation Products," Rept. UCRL-50422, Lawrence Radiation Laboratory, Livermore, 1968.