DOI QR코드

DOI QR Code

ERK-mediated phosphorylation of BIS regulates nuclear translocation of HSF1 under oxidative stress

  • Kim, Hye Yun (Department of Biochemistry, College of Medicine, The Catholic University of Korea) ;
  • Kim, Yong-Sam (Aging Intervention Research Center, Aging Research Institute, KRIBB) ;
  • Yun, Hye Hyeon (Department of Biochemistry, College of Medicine, The Catholic University of Korea) ;
  • Im, Chang-Nim (Department of Biochemistry, College of Medicine, The Catholic University of Korea) ;
  • Ko, Jeong-Heon (Aging Intervention Research Center, Aging Research Institute, KRIBB) ;
  • Lee, Jeong-Hwa (Department of Biochemistry, College of Medicine, The Catholic University of Korea)
  • Received : 2016.05.01
  • Accepted : 2016.05.12
  • Published : 2016.09.30

Abstract

B-cell lymphoma (BCL)-2-interacting cell death suppressor (BIS) has diverse cellular functions depending on its binding partners. However, little is known about the effects of biochemical modification of BIS on its various activities under oxidative stress conditions. In this study, we showed that $H_2O_2$ reduced BIS mobility on SDS-polyacrylamide gels in a time-dependent manner via the activation of extracellular signaling-regulated kinase (ERK). The combined results of mass spectroscopy and computational prediction identified Thr285 and Ser289 in BIS as candidate residues for phosphorylation by ERK under oxidative stress conditions. Deletion of these sites resulted in a partial reduction in the $H_2O_2-induced$ mobility shift relative to that of the wild-type BIS protein; overexpression of the deletion mutant sensitized A172 cells to $H_2O_2-induced$ cell death without increasing the level of intracellular reactive oxygen species. Expression of the BIS deletion mutant decreased the level of heat shock protein (HSP) 70 mRNA following $H_2O_2$ treatment, which was accompanied by impaired nuclear translocation of heat shock transcription factor (HSF) 1. Co-immunoprecipitation assays revealed that the binding of wild-type BIS to HSF1 was decreased by oxidative stress, while the binding of the BIS deletion mutant to HSF1 was not affected. These results indicate that ERK-dependent phosphorylation of BIS has a role in the regulation of nuclear translocation of HSF1 likely through modulation of its interaction affinity with HSF1, which affects HSP70 expression and sensitivity to oxidative stress.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Lee JH, Takahashi T, Yasuhara N, Inazawa J, Kamada S, Tsujimoto Y. Bis, a Bcl-2-binding protein that synergizes with Bcl-2 in preventing cell death. Oncogene 1999; 18: 6183-6190. https://doi.org/10.1038/sj.onc.1203043
  2. Jacobs AT, Marnett LJ. HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins. J Biol Chem 2009; 284: 9176-9183. https://doi.org/10.1074/jbc.M808656200
  3. Wang HQ, Liu BQ, Gao YY, Meng X, Guan Y, Zhang HY et al. Inhibition of the JNK signalling pathway enhances proteasome inhibitor-induced apoptosis of kidney cancer cells by suppression of BAG3 expression. Br J Pharmacol 2009; 158: 1405-1412. https://doi.org/10.1111/j.1476-5381.2009.00455.x
  4. Festa M, Del Valle L, Khalili K, Franco R, Scognamiglio G, Graziano V et al. BAG3 protein is overexpressed in human glioblastoma and is a potential target for therapy. Am J Pathol 2011; 178: 2504-2512. https://doi.org/10.1016/j.ajpath.2011.02.002
  5. Romano MF, Festa M, Pagliuca G, Lerose R, Bisogni R, Chiurazzi F et al. BAG3 protein controls B-chronic lymphocytic leukaemia cell apoptosis. Cell Death Differ 2003; 10: 383-385. https://doi.org/10.1038/sj.cdd.4401167
  6. Liao Q, Ozawa F, Friess H, Zimmermann A, Takayama S, Reed JC et al. The anti-apoptotic protein BAG-3 is overexpressed in pancreatic cancer and induced by heat stress in pancreatic cancer cell lines. FEBS Lett 2001; 503: 151-157. https://doi.org/10.1016/S0014-5793(01)02728-4
  7. Franco R, Scognamiglio G, Salerno V, Sebastiani A, Cennamo G, Ascierto PA et al. Expression of the anti-apoptotic protein BAG3 in human melanomas. J Invest Dermatol 2012; 132: 252-254. https://doi.org/10.1038/jid.2011.257
  8. Chiappetta G, Ammirante M, Basile A, Rosati A, Festa M, Monaco M et al. The antiapoptotic protein BAG3 is expressed in thyroid carcinomas and modulates apoptosis mediated by tumor necrosis factor-related apoptosisinducing ligand. J Clin Endocrinol Metab 2007; 92: 1159-1163. https://doi.org/10.1210/jc.2006-1712
  9. Rosati A, Ammirante M, Gentilella A, Basile A, Festa M, Pascale M et al. Apoptosis inhibition in cancer cells: a novel molecular pathway that involves BAG3 protein. Int J Biochem Cell Biol 2007; 39: 1337-1342. https://doi.org/10.1016/j.biocel.2007.03.007
  10. Pagliuca MG, Lerose R, Cigliano S, Leone A. Regulation by heavy metals and temperature of the human BAG-3 gene, a modulator of Hsp70 activity. FEBS Lett 2003; 541: 11-15. https://doi.org/10.1016/S0014-5793(03)00274-6
  11. Franceschelli S, Rosati A, Lerose R, De Nicola S, Turco MC, Pascale M. Bag3 gene expression is regulated by heat shock factor 1. J Cell Physiol 2008; 215: 575-577. https://doi.org/10.1002/jcp.21397
  12. Yoo HJ, Im CN, Youn DY, Yun HH, Lee JH. Bis is Induced by Oxidative Stress via Activation of HSF1. Korean J Physiol Pharmacol 2014; 18: 403-409. https://doi.org/10.4196/kjpp.2014.18.5.403
  13. Christians ES, Ishiwata T, Benjamin IJ. Small heat shock proteins in redox metabolism: implications for cardiovascular diseases. Int J Biochem Cell Biol 2012; 44: 1632-1645. https://doi.org/10.1016/j.biocel.2012.06.006
  14. Doong H, Price J, Kim YS, Gasbarre C, Probst J, Liotta LA et al. CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70. Oncogene 2000; 19: 4385-4395. https://doi.org/10.1038/sj.onc.1203797
  15. Fuchs M, Poirier DJ, Seguin SJ, Lambert H, Carra S, Charette SJ et al. Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction. Biochem J 2010; 425: 245-255. https://doi.org/10.1042/BJ20090907
  16. Xu Z, Graham K, Foote M, Liang F, Rizkallah R, Hurt M et al. 14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes. J Cell Sci 2013; 126: 4173-4186. https://doi.org/10.1242/jcs.126102
  17. Li N, Du ZX, Zong ZH, Liu BQ, Li C, Zhang Q et al. PKCdelta-mediated phosphorylation of BAG3 at Ser187. site induces epithelial-mesenchymal transition and enhances invasiveness in thyroid cancer FRO cells. Oncogene 2013; 32: 4539-4548. https://doi.org/10.1038/onc.2012.466
  18. Iorio V, Festa M, Rosati A, Hahne M, Tiberti C, Capunzo M et al. BAG3 regulates formation of the SNARE complex and insulin secretion. Cell Death Dis 2015; 6: e1684. https://doi.org/10.1038/cddis.2015.53
  19. Lee MY, Kim SY, Shin SL, Choi YS, Lee JH, Tsujimoto Y et al. Reactive astrocytes express bis, a bcl-2-binding protein, after transient forebrain ischemia. Exp Neurol 2002; 175: 338-346. https://doi.org/10.1006/exnr.2002.7903
  20. Jung SE, Kim YK, Youn DY, Lim MH, Ko JH, Ahn YS et al. Downmodulation of Bis sensitizes cell death in C6 glioma cells induced by oxygen-glucose deprivation. Brain Res 2010; 1349: 1-10. https://doi.org/10.1016/j.brainres.2010.06.043
  21. Lim JH, Youn DY, Yoo HJ, Yoon HH, Kim MY, Chung S et al. Aggravation of diabetic nephropathy in BCL-2 interacting cell death suppressor (BIS)-haploinsufficient mice together with impaired induction of superoxide dismutase (SOD) activity. Diabetologia 2014; 57: 214-223. https://doi.org/10.1007/s00125-013-3064-0
  22. Youn DY, Lee DH, Lim MH, Yoon JS, Lim JH, Jung SE et al. Bis deficiency results in early lethality with metabolic deterioration and involution of spleen and thymus. Am J Physiol Endocrinol Metab 2008; 295: E1349-E1357. https://doi.org/10.1152/ajpendo.90704.2008
  23. Cui MN, Yun HH, Lee NE, Kim HY, Im CN, Kim YS et al. Depletion of BIS sensitizes A549 cells to treatment with cisplatin. Mol Cell Toxicol 2016; 12: 63-71. https://doi.org/10.1007/s13273-016-0009-y
  24. Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 2003; 31: 3635-3641. https://doi.org/10.1093/nar/gkg584
  25. Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 2008; 7: 1598-1608. https://doi.org/10.1074/mcp.M700574-MCP200
  26. Torres M, Forman HJ. Redox signaling and the MAP kinase pathways. Biofactors 2003; 17: 287-296. https://doi.org/10.1002/biof.5520170128
  27. Leung AM, Redlak MJ, Miller TA. Role of heat shock proteins in oxygen radical-induced gastric apoptosis. J Surg Res 2015; 193: 135-144. https://doi.org/10.1016/j.jss.2014.07.013
  28. Lazarev VF, Nikotina AD, Mikhaylova ER, Nudler E, Polonik SG, Guzhova IV et al. Hsp70 chaperone rescues C6 rat glioblastoma cells from oxidative stress by sequestration of aggregating GAPDH. Biochem Biophys Res Commun 2016; 470: 766-771. https://doi.org/10.1016/j.bbrc.2015.12.076
  29. Vihervaara A, Sistonen L. HSF1 at a glance. J Cell Sci 2014; 127: 261-266. https://doi.org/10.1242/jcs.132605
  30. Anckar J, Sistonen L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 2011; 80: 1089-1115. https://doi.org/10.1146/annurev-biochem-060809-095203
  31. Calderwood SK, Xie Y, Wang X, Khaleque MA, Chou SD, Murshid A et al. Signal transduction pathways leading to heat shock transcription. Sign Transduct Insights 2010; 2: 13-24.
  32. Petrache I, Choi ME, Otterbein LE, Chin BY, Mantell LL, Horowitz S et al. Mitogen-activated protein kinase pathway mediates hyperoxia-induced apoptosis in cultured macrophage cells. Am J Physiol 1999; 277: L589-L595. https://doi.org/10.1152/ajpcell.1999.277.3.C589
  33. Bhat NR, Zhang P. Hydrogen peroxide activation of multiple mitogenactivated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J Neurochem 1999; 72: 112-119. https://doi.org/10.1046/j.1471-4159.1999.0720112.x
  34. Ishikawa Y, Kitamura M. Anti-apoptotic effect of quercetin: intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int 2000; 58: 1078-1087. https://doi.org/10.1046/j.1523-1755.2000.00265.x
  35. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogenactivated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 1996; 271: 4138-4142. https://doi.org/10.1074/jbc.271.8.4138
  36. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M et al. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 1997; 100: 1813-1821. https://doi.org/10.1172/JCI119709
  37. Ikeyama S, Kokkonen G, Shack S, Wang XT, Holbrook NJ. Loss in oxidative stress tolerance with aging linked to reduced extracellular signal-regulated kinase and Akt kinase activities. FASEB J 2002; 16: 114-116. https://doi.org/10.1096/fj.01-0409fje
  38. Falco A, Festa M, Basile A, Rosati A, Pascale M, Florenzano F et al. BAG3 controls angiogenesis through regulation of ERK phosphorylation. Oncogene 2012; 31: 5153-5161. https://doi.org/10.1038/onc.2012.17
  39. Pasillas MP, Shields S, Reilly R, Strnadel J, Behl C, Park R et al. Proteomic analysis reveals a role for Bcl2-associated athanogene 3 and major vault protein in resistance to apoptosis in senescent cells by regulating ERK1/2 activation. Mol Cell Proteomics 2015; 14: 1-14. https://doi.org/10.1074/mcp.M114.037697
  40. Oksala NK, Ekmekci FG, Ozsoy E, Kirankaya S, Kokkola T, Emecen G et al. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biol 2014; 3: 25-28. https://doi.org/10.1016/j.redox.2014.10.003
  41. Kondrikov D, Fulton D, Dong Z, Su Y. Heat shock protein 70 prevents hyperoxia-induced disruption of lung endothelial barrier via caspasedependent and AIF-dependent pathways. PLoS ONE 2015; 10: e0129343. https://doi.org/10.1371/journal.pone.0129343
  42. Yurinskaya MM, Mitkevich VA, Kozin SA, Evgen'ev MB, Makarov AA, Vinokurov MG. HSP70 protects human neuroblastoma cells from apoptosis and oxidative stress induced by amyloid peptide isoAsp7-Abeta(1-42). Cell Death Dis 2015; 6: e1977. https://doi.org/10.1038/cddis.2015.336
  43. Davies KJ. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem 1987; 262: 9895-9901.
  44. Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells. FASEB J 1997; 11: 526-534. https://doi.org/10.1096/fasebj.11.7.9212076
  45. Sisoula C, Gonos ES. CHIP E3 ligase regulates mammalian senescence by modulating the levels of oxidized proteins. Mech Ageing Dev 2011; 132: 269-272. https://doi.org/10.1016/j.mad.2011.04.003
  46. Lee JS, Seo TW, Yi JH, Shin KS, Yoo SJ. CHIP has a protective role against oxidative stress-induced cell death through specific regulation of endonuclease G. Cell Death Dis 2013; 4: e666. https://doi.org/10.1038/cddis.2013.181
  47. Du ZX, Zhang HY, Meng X, Gao YY, Zou RL, Liu BQ et al. Proteasome inhibitor MG132 induces BAG3 expression through activation of heat shock factor 1. J Cell Physiol 2009; 218: 631-637. https://doi.org/10.1002/jcp.21634
  48. Chen Y, Yang LN, Cheng L, Tu S, Guo SJ, Le HY et al. Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity. Mol Cell Proteomics 2013; 12: 2804-2819. https://doi.org/10.1074/mcp.M112.025882
  49. Jin YH, Ahn SG, Kim SA. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress. Biochem Biophys Res Commun 2015; 464: 561-567. https://doi.org/10.1016/j.bbrc.2015.07.006
  50. Bruce JL, Price BD, Coleman CN, Calderwood SK. Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Res 1993; 53: 12-15.
  51. Sandoval-Montiel AA, Zentella-de-Pina M, Ventura-Gallegos JL, Frias-Gonzalez S, Lopez-Macay A, Zentella-Dehesa A. HSP-72 accelerated expression in mononuclear cells induced in vivo by acetyl salicylic acid can be reproduced in vitro when combined with H2O2. PLoS ONE 2013; 8: e65449. https://doi.org/10.1371/journal.pone.0065449
  52. Adachi M, Liu Y, Fujii K, Calderwood SK, Nakai A, Imai K et al. Oxidative stress impairs the heat stress response and delays unfolded protein recovery. PLoS ONE 2009; 4: e7719. https://doi.org/10.1371/journal.pone.0007719
  53. Jacquier-Sarlin MR, Polla BS. Dual regulation of heat-shock transcription factor (HSF) activation and DNA-binding activity by H2O2: role of thioredoxin. Biochem J 1996; 318 (Pt 1): 187-193. https://doi.org/10.1042/bj3180187
  54. Li Y, Roth S, Laser M, Ma JX, Crosson CE. Retinal preconditioning and the induction of heat-shock protein 27. Invest Ophthalmol Vis Sci 2003; 44: 1299-1304. https://doi.org/10.1167/iovs.02-0235
  55. Awasthi N, Wagner BJ. Upregulation of heat shock protein expression by proteasome inhibition: an antiapoptotic mechanism in the lens. Invest Ophthalmol Vis Sci 2005; 46: 2082-2091. https://doi.org/10.1167/iovs.05-0002

Cited by

  1. Heat shock transcription factor 1 protects against pressure overload-induced cardiac fibrosis via Smad3 vol.95, pp.4, 2016, https://doi.org/10.1007/s00109-016-1504-2
  2. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties vol.18, pp.2, 2016, https://doi.org/10.3390/ijms18020468
  3. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency vol.32, pp.7, 2016, https://doi.org/10.1096/fj.201700558rr
  4. Effect of BIS depletion on HSF1-dependent transcriptional activation in A549 non-small cell lung cancer cells vol.22, pp.4, 2016, https://doi.org/10.4196/kjpp.2018.22.4.457
  5. SRSF3 Is a Critical Requirement for Inclusion of Exon 3 of BIS Pre-mRNA vol.9, pp.10, 2016, https://doi.org/10.3390/cells9102325
  6. CDK1-Mediated Phosphorylation of BAG3 Promotes Mitotic Cell Shape Remodeling and the Molecular Assembly of Mitotic p62 Bodies vol.10, pp.10, 2016, https://doi.org/10.3390/cells10102638