DOI QR코드

DOI QR Code

A review on the separation of molybdenum, tungsten, and vanadium from leach liquors of diverse resources by solvent extraction

  • Nguyen, Thi Hong (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • Received : 2016.04.03
  • Accepted : 2016.05.02
  • Published : 2016.11.30

Abstract

Molybdenum, vanadium, and tungsten coexist with other valuable metals in diverse resources. In order to recover these metals with high purity, hydrometallurgical processes consisting of leaching followed by solvent extraction have been developed. The solvent extraction systems for the separation of Mo-V, Mo-W, and Mo-V-W from various aqueous medium were reviewed in this work. The aqueous chemistry of the three metals (Mo, V, and W) strongly depends on solution pH, metal concentration, and the nature of medium. On the basis of species of the three metals, the separation of these metals by solvent extraction with cationic and solvating extractants and amines were evaluated and the optimum conditions were reported. Cationic and solvating extractants are effective for the separation of molybdenum and vanadium from acidic solutions. Amines are found to be the most promising extractants for the separation of molybdenum and tungsten from alkaline solutions. However, the complete separation of the three metals by amines or solvating extractants is difficult from either acidic or alkaline solutions.

Keywords

References

  1. Akcil, A., Veglio, F., Ferella, F., Okudan, M. D., & Tuncuk, A. (2015). A review of metal recovery from spent petroleum catalysts and ash. Waste Management, 45, 420-433. https://doi.org/10.1016/j.wasman.2015.07.007
  2. Amiri, F., Yaghmaei, S., Mousavi, S. M., & Sheibani, S. (2011). Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger. Hydrometallurgy, 109, 65-71. https://doi.org/10.1016/j.hydromet.2011.05.008
  3. Bal, Y., Bal, K. E., Cote, G., & Lallam, A. (2004). Characterization of the solid third phases that precipitate from the organic solutions of $Aliquat^{(R)}$ 336 after extraction of molybdenum(VI) and vanadium(V). Hydrometallurgy, 75, 123-134. https://doi.org/10.1016/j.hydromet.2004.07.004
  4. Banda, R., Sohn, S. H., & Lee, M. S. (2012). Process development for the separation and recovery of Mo and Co from chloride leach liquors of petroleum refining catalyst by solvent extraction. Journal of Hazardous Materials, 213-214, 1-6. https://doi.org/10.1016/j.jhazmat.2011.12.078
  5. Biswas, R. K. (1985). Recovery of vanadium and molybdenum from heavy oil desulphurization waste catalyst. Hydrometallurgy, 14, 219-230. https://doi.org/10.1016/0304-386X(85)90034-9
  6. Chagnes, A., Rager, M. N., Courtaud, B., Thiry, J., & Cote, G. (2010). Speciation of vanadium (V) extracted from acidic sulfate media by trioctylamine in n-dodecane modified with 1-tridecanol. Hydrometallurgy, 104, 20-24. https://doi.org/10.1016/j.hydromet.2010.04.004
  7. Chen, Y., Feng, Q., Shao, Y., Zhang, G., Ou, L., & Lu, Y. (2006a). Research on the recycling of valuable metals in spent $Al_2O_3$-based catalyst. Minerals Engineering, 19, 94-97. https://doi.org/10.1016/j.mineng.2005.06.008
  8. Chen, Y., Feng, Q., Shao, Y., Zhang, G., Ou, L., & Lu, Y. (2006b). Investigations on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst. International Journal of Mineral Processing, 79, 42-48. https://doi.org/10.1016/j.minpro.2005.11.009
  9. Cibati, A., Cheng, K. Y., Morris, C., Ginige, M. P., Sahinkaya, E., Pagnanelli, F., & Kaksonen, A. H. (2013). Selective precipitation of metals from synthetic spent refinery catalyst leach liquor with biogenic H2S produced in a lactate-fed anaerobic baffled reactor. Hydrometallurgy, 139, 154-161. https://doi.org/10.1016/j.hydromet.2013.01.022
  10. Coca, J., Diez, F. V., & Moris, M. A. (1990). Solvent extraction of molybdenum and tungsten by Alamine 336 and DEHPA. Hydrometallurgy, 25, 125-135. https://doi.org/10.1016/0304-386X(90)90034-Y
  11. Cruywagen, J. J. (1999). Protonation, ologomerization, and condensation reactions of vanadate (V), molybdate (VI), and tungsten (VI). Advances in inorganic chemistry, 49, 127-182.
  12. Cruywagen, J. J., Draaijer, A. G., Heyns, J. B. B., & Rohwer, E. A. (2002). Molybdenum(VI) equilibria in different ionic media. Formation constants and thermodynamic quantities. Inorganica Chimica Acta, 331, 322-329. https://doi.org/10.1016/S0020-1693(02)00700-4
  13. Dai, G. S., Xuan, B. Y., & Su, Y. F. (1984). Separation of tungsten and molybdenum in dilute hydrochloric acid solution by extraction with sulfoxides. Hydrometallurgy, 13, 137-153. https://doi.org/10.1016/0304-386X(84)90023-9
  14. Earnshaw, A., Greenwood, N. (1997). Chemistry of the elements (2nd ed.). Amsterdam: Elsevier.
  15. El-Nadi, Y. A., Awwad, N. S., & Nayl, A. A. (2009). A comparative study of vanadium extraction by Aliquat 336 from acidic and alkaline media with application to spent catalyst. International Journal of Mineral Processing, 92, 115-120. https://doi.org/10.1016/j.minpro.2009.03.005
  16. Gerhardt, N. I., Palant, A. A., & Dungan, S. R. (2000). Extraction of tungsten (VI), molybdenum (VI) and rhenium (VII) by diisododecylamine. Hydrometallurgy, 55, 1-15. https://doi.org/10.1016/S0304-386X(99)00068-7
  17. Gerhardt, N. I., Palant, A. A., Petrova, V. A., & Tagirov, R. K. (2001). Solvent extraction of molybdenum (VI), tungsten (VI) and rhenium (VII) by diisododecylamine from leach liquors. Hydrometallurgy, 60, 1-5. https://doi.org/10.1016/S0304-386X(00)00123-7
  18. Guan, W., Zhang, G., & Gao, C. (2012). Solvent extraction separation of molybdenum and tungsten from ammonium solution by $H_2O_2$-complextion. Hydrometallurgy, 127-128, 84-90. https://doi.org/10.1016/j.hydromet.2012.07.008
  19. Guan, W., Zhang, G., & Gao, C. (2013). Precursor solution prepared by evaporation deamination complex method for solvent extraction separation of Mo and W by $H_2O_2$-complextion. Transactions of Nonferrous Metals Society of China, 23, 1139-1146. https://doi.org/10.1016/S1003-6326(13)62576-5
  20. Huo, G., Peng, C., Song, Q., & Lu, X. (2014). Tungsten removal from molybdate solutions using ion exchange. Hydrometallurgy, 147-148, 217-222. https://doi.org/10.1016/j.hydromet.2014.05.015
  21. Kim, H. I., Lee, K. W., Mishra, D., Yi, K. M., Hong, J. H., Jun, M. K., & Park, H. K. (2014). Separation and recovery of vanadium from leached solution of spent residuehydrodesulfurization (RHDS) catalyst using solvent extraction. Journal of Industrial and Engineering Chemistry, 20, 4457-4462. https://doi.org/10.1016/j.jiec.2014.02.017
  22. Kim, H. I., Lee, K. W., Mishra, D., Yi, K. M., Hong, J. H., Jun, M. K., & Park, H. K. (2015). Separation of molybdenum and vanadium from oxalate leached solution of spent residue hydrodesulfurization (RHDS) catalyst by liquid-liquid extraction using amine extractant. Journal of Industrial and Engineering Chemistry, 21, 1265-1269. https://doi.org/10.1016/j.jiec.2014.05.043
  23. Lee, M. S., Sohn, S. H., & Lee, M. H. (2011). Ionic equilibria and ion exchange of molybdenum from strong acid solution. Bulletin of the Korean Chemical Society, 32, 1-5.
  24. Li, J., Zhao, Z., Cao, C., Zhang, G., & Huo, G. (2012). Recovery of Mo from Ni-Mo ore leach solution with carrier coprecipitation method. International Journal of Refractory Metals and Hard Materials, 30, 180-184. https://doi.org/10.1016/j.ijrmhm.2011.08.005
  25. Li, W., Zhang, Y., Liu, T., Huang, J., & Wang, Y. (2013). Comparison of ion exchange and solvent extraction in recovering vanadium from sulfuric acid leach solutions of stone coal. Hydrometallurgy, 131-132, 1-7. https://doi.org/10.1016/j.hydromet.2012.09.009
  26. Li, X., Wei, C., Wu, J., Li, M., Deng, Z., Li, C., & Xu, H. (2012). Co-extraction and selective stripping of vanadium (IV) and molybdenum (VI) from sulphuric acid solution using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester. Separation and Purification Technology, 86, 64-69. https://doi.org/10.1016/j.seppur.2011.10.021
  27. Lozano, L. J., & Juan, D. (2001). Solvent extraction of polyvanadates from sulphate solutions by primene 81R. Its application to the recovery of vanadium from spent sulphuric acid catalysts leaching solutions. Solvent Extraction and Ion Exchange, 19, 359-676.
  28. Mahmoud, M. H. H., Nakamura, S., & Akiba, K. (1996). Extraction separation of molybdenum(VI) and tungsten(VI) by ${\alpha}$-hydroxy oxim. Solvent Extraction and Ion Exchange, 14, 203-217. https://doi.org/10.1080/07366299608918335
  29. Marafi, M., & Furimsky, E. (2005). Selection of organic agents for reclamation of metals from spent hydroprocessing catalyst. Erdol, Erdgas Kohle, 121, 93-96.
  30. Marafi, M., & Stanislaus, A. (2008a). Spent catalyst waste management: A review. Part I-developments in hydroprocessing catalyst waste reduction and use. Resources, Conservation and Recycling, 52, 859-873. https://doi.org/10.1016/j.resconrec.2008.02.004
  31. Marafi, M., & Stanislaus, A. (2008b). Spent catalyst waste management: A review. Part II. Advances in metal recovery and safe disposal methods. Resources, Conservation and Recycling, 53, 1-26. https://doi.org/10.1016/j.resconrec.2008.08.005
  32. Marcantonio, J. P. (1991). Leaching cobalt from metalcontaining particles. U.S. Patent No. 5,066,469.
  33. Mishra, D., Chaudhury, G. R., Kim, D. J., & Ahn, J. G. (2010). Recovery of metal values from spent petroleum catalyst using leaching-solvent extraction technique. Hydrometallurgy, 101, 35-40. https://doi.org/10.1016/j.hydromet.2009.11.016
  34. Moris, M. A., Diez, F. V., & Coca, Jose (1999). Solvent extraction of molybdenum and tungsten by Alamine 336 and DEHPA in a rotating disc contactor. Separation and Purification Technology, 17, 173-179. https://doi.org/10.1016/S1383-5866(99)00022-2
  35. Mulak, V., Szymczycha, A., Lesnieweicz, A., & Zyrnicki, W. (2006). Preliminary resulys of metals leaching from a spent hydrodesulphurization (HDS) catalyst. Physicochemical Problems of Mineral Processing, 40, 420-433.
  36. Nakamura, T., Nishihama, S., & Yoshizuka, K. (2009). A novel extractant based on D-glucosamine for the extraction of molybdenum and tungsten. Solvent Extraction Research and Development, Japan, 16, 47-56.
  37. Nekovar, P., & Schrotterova, D. (2000). Extraction of V(V), Mo(VI) and W(VI) polynuclear species by primene JMT. Chemical Engineering Journal, 79, 229-233. https://doi.org/10.1016/S1385-8947(00)00207-2
  38. Nekovar, P., & Schrotterova, D. (1998). Liquid-liquid extraction of Mo(VI), V(V) by Primene JMT. Journal of Radioanalytical and Nuclear Chemistry, 228, 95-98. https://doi.org/10.1007/BF02387306
  39. Nguyen, H. T., & Lee, M. S. (2013a). Recovery of molybdenum and vanadium from acidic leaching solution of spent catalysts by solvent extraction. Journal of the Korean Institute of Resources Recycling, 22, 3-11.
  40. Nguyen, T. H. & Lee, M. S. (2013b). Separation of molybdenum and vanadium from acid solutions by ion exchange. Hydrometallurgy, 136, 65-70. https://doi.org/10.1016/j.hydromet.2013.03.007
  41. Nguyen, T. H., & Lee, M. S. (2014a). Recovery of molybdenum and vanadium with high purity from sulfuric acid leach solution of spent hydrodesulfurization catalysts by ion exchange. Hydrometallurgy, 147-148, 142-147. https://doi.org/10.1016/j.hydromet.2014.05.010
  42. Nguyen, T. H. & Lee, M. S. (2014b). Separation of vanadium and tungsten from sodium molybdate solution by solvent extraction. Industrial & Engineering Chemistry Research, 53, 8608-8614. https://doi.org/10.1021/ie500486y
  43. Nguyen, T. H., & Lee, M. S. (2015a). Separation of molybdenum(VI) and tungsten(VI) from sulfate solutions by solvent extraction with LIX 63 and PC 88A. Hydrometallurgy, 155, 51-55. https://doi.org/10.1016/j.hydromet.2015.04.014
  44. Nguyen, T. H., & Lee, M. S. (2015b). Separation of molybdenum(VI) and tungsten(VI) from sulfuric acid solution by ion exchange with TEHA resin. Separation Science and Technology, 50, 2060-2065.
  45. Ning, P., Cao, H., & Zhang, Y. (2009). Selective extraction and deep removal of tungsten from sodium molybdate solution by primary amine N1923. Separation and Purification Technology, 70, 27-33. https://doi.org/10.1016/j.seppur.2009.08.006
  46. Olazabal, M. A., Orive, M. M., Fernandez, L. A., & Madariaga, J. M. (1992). Selective extraction of vanadium (V) from solutions containing molybdenum (VI) By Ammonium Salts Dissolved In Toluene. Solvent Extraction and Ion Exchange, 10, 623-635. https://doi.org/10.1080/07366299208918125
  47. Pagnanelli, F., Ferella, F., Michelis, I. D., & Veglio, F. (2011). Adsorption onto activated carbon for molybdenum recovery from leach liquors of exhausted hydrotreating catalysts. Hydrometallurgy, 110, 67-72. https://doi.org/10.1016/j.hydromet.2011.08.008
  48. Park, K. H., Reddy, B. R., Mohapatra, D., & Nam, C. W. (2006a). Hydrometallurgical processing and recovery of molybdenum trioxide from spent catalyst. International Journal of Mineral Processing, 80, 261-265. https://doi.org/10.1016/j.minpro.2006.05.002
  49. Park, K. H., Mohapatra, D., & Reddy, B. R. (2006b). Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method. Journal of Hazardous Materials, 138, 311-316. https://doi.org/10.1016/j.jhazmat.2006.05.115
  50. Rokukawa, N. (1983). Method for selective recovery of molybdenum values from spent catalyst. U.S. Patent No. 4,382,068.
  51. Sahu, K. K., Agrawal, A., & Mishra, D. (2013). Hazardous waste to materials: Recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308. Journal of Environmental Management, 125, 68-73.
  52. Saily, A., Khurana, U., Yadav, S. K., & Tandon, S. N. (1996). Thiophosphinic acids as selective extractants for molybdenum recovery from a low grade ore and spent catalysts. Hydrometallurgy, 41, 99-105. https://doi.org/10.1016/0304-386X(95)00052-I
  53. Sato, T., & Sato, K. (1995). Liquid-liquid extraction of tungsten(VI) from hydrochloric acid solutions by neutral organophosphorus compounds and high molecular weight amines. Hydrometallurgy, 37, 253-266. https://doi.org/10.1016/0304-386X(94)00066-C
  54. Sato, T., Ikoma, S., & Nakamura, T. (1977). The extraction of vanadium(IV) from hydrochloric acid solutions by long - chain alkyl amine and alkyl ammonium compound. Journal of Inorganic and Nuclear Chemistry, 39, 395-399. https://doi.org/10.1016/0022-1902(77)80048-1
  55. Sato, T., Watanabe, H., & Suzuki, H. (1986). Liquid-liquid extraction of molybdenum(VI) from aqueous acid solutions by high-molecular weight amines. Solvent Extraction and Ion Exchange, 4, 987-998. https://doi.org/10.1080/07366298608917904
  56. Shao, Y., Feng, Q., Chen, Y., Ou, L., Zhang, G., & Lu, Y. (2009). Studies on recovery of vanadium from desilication residue obtained from processing of a spent catalyst. Hydrometallurgy, 96, 166-170. https://doi.org/10.1016/j.hydromet.2008.10.005
  57. Srivastava, R. R., Mittal, N. K., Padh, B., & Reddy, B. R. (2012). Removal of tungsten and other impurities from spent HDS catalyst leach liquor by an adsorption route. Hydrometallurgy, 127-128, 77-83. https://doi.org/10.1016/j.hydromet.2012.07.004
  58. Szymczycha-Madeja, A. (2011). Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide. Journal of Hazardous Materials, 186, 2157-2161. https://doi.org/10.1016/j.jhazmat.2010.11.120
  59. Talla, R. G., Gaikwad, S. U., & Pawar, S. D. (2010). Solvent extraction and separation of Mo(VI) and W(VI) from hydrochloric acid solutions using cyanex-923 as extractant. Indian Journal of Chemical Technology, 17, 436-440.
  60. Villarreal, S. S., Kharisov, N. I., Torres Martinez, L. M., & Elizondo, V. N. (1999). Recovery of vanadium and molybdenum from spent petroleum catalyst of PEMEX. Industrial & engineering chemistry research, 38, 4324-4628.
  61. Wang, M., Wang, X., & Liu, W. (2009). A novel technology of molybdenum extraction from low grade Ni-Mo ore. Hydrometallurgy, 97, 126-130. https://doi.org/10.1016/j.hydromet.2008.12.004
  62. Wang, S. F., Wei, C., Deng, Z. G., & Li, C. X. (2013). Extraction of molybdenum and nickel from Ni-Mo ore by pressure acid leaching. Transactions of Nonferrous Metals Society of China, 23, 3083-3088. https://doi.org/10.1016/S1003-6326(13)62837-X
  63. Wiewiorowski, E., Tinnin, R., & Cronojevich, R. A. (1988). Cyclic process for recovery of metals from spent catalysts. U.S. Patent No. 4,670,229.
  64. Wu, J., Wei, C., Li, X., Wang, S., Wang, M., & Li, C. (2012). Selective extraction of Mo using Cyanex-272 and tributyl phosphate from low grade Ni-Mo ore leach liquor. Separation and Purification Technology, 99, 120-126. https://doi.org/10.1016/j.seppur.2012.08.007
  65. Zeng, L., & Cheng, C. Y. (2009a). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurization catalysts. Part I: Metallurgical process. Hydrometallurgy, 98, 1-9. https://doi.org/10.1016/j.hydromet.2009.03.010
  66. Zeng, L., & Cheng, C. Y. (2009b). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurization catalysts. Part II: Separation and purification. Hydrometallurgy, 98, 10-20. https://doi.org/10.1016/j.hydromet.2009.03.012
  67. Zeng, L., & Cheng, C. Y. (2010). Recovery of molybdenum and vanadium from synthetic sulphuric acid leach solutions of spent hydrodesulphurisation catalysts using solvent extraction. Hydrometallurgy, 101, 141-147. https://doi.org/10.1016/j.hydromet.2009.12.008
  68. Zhang, J., Liu, X., Chen, X., Li, J., & Zhao, Z. (2014). Separation of tungsten and molybdenum using macroporous resin: Competitive adsorption kinetics in binary system. Hydrometallurgy, 144-145, 77-85. https://doi.org/10.1016/j.hydromet.2013.12.002
  69. Zhang, P., & Inoue, K. (1995). Recovery of metal values from spent hydrodesulfurization catalysts by liquid-liquid extraction. Energy & Fuels, 9, 231-239. https://doi.org/10.1021/ef00050a005
  70. Zhang, P., Inoue, K., Yoshizuka, K., & Tsuyama, H. (1996). Extraction and selective stripping of molybdenum(VI) and vanadium(IV) from sulfuric acid solution containing aluminum(III), cobalt(II), nickel(II) and iron(III) by LIX 63 in Exxsol D80. Hydrometallurgy, 41, 45-53. https://doi.org/10.1016/0304-386X(95)00015-9
  71. Zhao, Z., Li, J., Cao, C., Huo, G., Zhang, G., & Li, H. (2010). Recovery and purification of molybdenum from Ni-Mo ore by direct air oxidation in alkaline solution. Hydrometallurgy, 103, 68-73. https://doi.org/10.1016/j.hydromet.2010.02.018
  72. Zhao, Z. W., Cao, C. F., & Chen, X. Y. (2011). Separation of macro amounts of tungsten and molybdenum by precipitation with ferrous salt. Transactions of Nonferrous Metals Society of China, 21, 2758-2763. https://doi.org/10.1016/S1003-6326(11)61120-5
  73. Zhao, Z., Yang, L., Huo, G., Chen, X., & Huang, H. (2011). Solvent extraction of molybdenum blue from alkaline leaching solution of the Ni-Mo ore. International Journal of Refractory Metals and Hard Materials, 29, 232-236. https://doi.org/10.1016/j.ijrmhm.2010.10.011
  74. Zhao, Z., Zhang, J., Chen, X., Liu, X., Li, J., & Zhang, W. (2013). Separation of tungsten and molybdenum using macroporous resin: Equilibrium adsorption for single binary systems. Hydrometallurgy, 140, 120-127. https://doi.org/10.1016/j.hydromet.2013.09.014
  75. Zheng, Q., & Fan, H. (1986). Separation of molybdenum from tungsten by di-2-ethylhexyl phosphoric acid extractant. Hydrometallurgy, 16, 263-270. https://doi.org/10.1016/0304-386X(86)90002-2
  76. Zhu, Z., Tulpatowicz, K., Pranolo, Y., & Cheng, C. Y. (2015). Solvent extraction of molybdenum and vanadium from sulphate solutions with Cyphos IL 101. Hydrometallurgy, 154, 72-77. https://doi.org/10.1016/j.hydromet.2015.03.005