DOI QR코드

DOI QR Code

Electrical Properties of Cu/Mn Alloy Resistor with Low Resistance and Thermal Stability

낮은 저항과 열안정성을 가지는 Cu/Mn 합금저항의 전기적 특성

  • Kim, Eun Min (Electric Energy Conversion Research Team, Korea Electrical Engineering & Science Research Institute) ;
  • Kim, Sung Chul (Research Center, Samwoo Wire Co.) ;
  • Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
  • 김은민 (기초전력연구원 전기에너지변환연구팀) ;
  • 김성철 (삼우와이어 부설연구소) ;
  • 이선우 (인하공업전문대학 전기정보과)
  • Received : 2016.04.19
  • Accepted : 2016.04.25
  • Published : 2016.06.01

Abstract

In this paper, we fabricated Cu/Mn alloy shunt resistor with low resistance and thermal stability for use of mobile electronic devices. We designed metal alloy composed of copper (Cu) and manganese (Mn) to embody in low resistance and low TCR which are conflict each other. Cu allows high electrical conductivity and Mn serves thermal stability in this Cu/Mn alloy system. We confirmed the elemental composition of the designed metal alloy system by using energy dispersive X-ray (EDX) analysis. We obtained low resistance below $10m{\Omega}$ and low temperature coefficient of resistance (TCR) below $100ppm/^{\circ}C$ from the designed Cu/Mn alloy resistor. And in order to minimize resistance change caused by alternative frequency on circuit, shape design of the metal alloy wire is performed by rolling process. Finally, we conclude that design of the metal alloy system was successfully done by alloying Cu and 3 wt% of Mn, and the Cu/Mn alloy resistor has low resistance and thermal stability.

Keywords

References

  1. E. M. Kim, S. H. Lee, D. K Cho, S. H. Kim, The Transactions of the Korean Institute of Electrical Engineers, 63, 1070 (2014). [DOI: http://dx.doi.org/10.5370/KIEE.2014.63.8.1070]
  2. F. Galliana, P. P. Capra, and E. Gasparotto, Journal of Measurement, 46, 1630 (2013). [DOI: http://dx.doi.org/10.1016/j.measurement.2012.11.031]
  3. M. S. Huh, S. W. Choi, H. G. Chun, S. C. Kwon, G. H. Lee, and T. Y. Cho, Journal of Vacuum Society, 6, 77 (1997).
  4. Y. G. Ko, C. W. Lee, S. Namkung, D. H. Lee, and D. H. Sin, The Korean Society For Technology of Plasticity, 18, 476 (2009).
  5. F. Zandma, P. R. Simon, and J. Szwarc, Resistor Theory and Technology, 1st ed. (Malvern, U.S.A, Vishy Inter Technology Inc., 2001) p. 76-77.
  6. F. Zandma, P. R. Simon, and J. Szwarc, Resistor theory and Technology, 1st ed. (Malvern, U.S.A, Vishy Inter Technology Inc., 2001) p. 52-55.
  7. H. A. Harper, Electronic Materials and Processes Handbook (New York, U.S.A, McGraw-hill, 2010) p 4.1-4.71.
  8. D. A. Poter, K. E. Easterling, and M. Y. Sherif, Phase Transformation in Metals and Alloys London, 3rd ed. (UK, Garland Science, 2010) p. 213-217.
  9. S. H. Kim, J. W. Choi, D. W. Kim, and H. H. Kim, Journal of the Institute of Electrical and Electronic Material Engineers, 22, 210, (2009).
  10. T. Y. Yoon and Y. K. Koo, Fixed Resistors for Use in Electronic Equipment-part 1 : Generic Specification, Korea, Standards, KS C IEC- 60115, 15-16 (2006).
  11. K. F. Gooddard, A. A. Roy, and J. K. Sykulski, IEE Proc. Sci. Meas. Technol., 152, 7 (2005). [DOI: http://dx.doi.org/10.1049/ip-smt:20051057]