DOI QR코드

DOI QR Code

Characteristics of indoor air quality in the overground and underground railway stations

지상과 지하역사의 실내공기질 특성과 외기영향 평가

  • Namgung, Hyeong-Kyu (Transportation Environmental Research Team, Korea Railroad Research Institute) ;
  • Song, Ji-Han (Transportation Environmental Research Team, Korea Railroad Research Institute) ;
  • Kim, Soo-Yeon (Transportation Environmental Research Team, Korea Railroad Research Institute) ;
  • Kim, Hee-Man (Environmental Management Team, Korea Railroad Corporation) ;
  • Kwon, Soon-Bark (Transportation Environmental Research Team, Korea Railroad Research Institute)
  • 남궁형규 (한국철도기술연구원 교통환경연구팀) ;
  • 송지한 (한국철도기술연구원 교통환경연구팀) ;
  • 김수연 (한국철도기술연구원 교통환경연구팀) ;
  • 김희만 (한국철도공사 환경경영처) ;
  • 권순박 (한국철도기술연구원 교통환경연구팀)
  • Received : 2016.03.29
  • Accepted : 2016.05.12
  • Published : 2016.05.31

Abstract

In this study, the air quality of underground and overground railway stations was evaluated focusing on the degree of influence of the outside air quality. The measured components were particulate matter ($PM_{10}$), carbon dioxide ($CO_2$), carbon monoxide (CO), nitrogen dioxide ($NO_2$), formaldehyde (HCHO), ozone ($O_3$), total airborne bacteria (TAB), total volatile organic carbon (TVOC), and Radon (Rn), which are included in the maintenance standards and recommended standards of the Indoor Air Quality Management Act. Also, the indoor/outdoor concentration ratios of $PM_{10}$, $NO_2$, and $O_3$ were calculated to estimate the influence of the outdoor air quality. The concentrations of $PM_{10}$ HCHO, TVOC, $NO_2$, and Rn in the underground stations were found to be higher than those in the overground stations. These results indicate that the (present) generation of contaminants are caused by the indoor source of the underground station. The ozone concentration of the overground stations was higher than that of the underground stations, which indicates that the outdoor ozone concentration influenced that of the overground stations directly. Thus, methods of improving the IAQ should take into consideration the types of contamination.

본 연구에서는 지하역사와 지상역사에서의 실내공기질을 측정하고, 외부 공기에 의한 영향 정도를 확인하고자 하였다. 측정된 물질은 '실내공기질 관리법'상에서 유지기준과 권고기준으로 지정된 항목 중, 농도가 검출되지 않은 석면을 제외한 미세먼지($PM_{10}$), 이산화탄소($CO_2$), 일산화탄소(CO), 이산화질소($NO_2$), 폼알데하이드(HCHO), 오존($O_3$), 총부유세균(TAB), 총휘발성유기화합물(TVOC), 라돈 등 9종이다. 또한 미세먼지, 이산화질소, 오존 등 세 가지 물질은 I/O ratio를 통해 외기에의한 영향을 확인하였다. 공기질 측정결과 지상역사에 비해 지하역사에서 미세먼지, 폼알데하이드, 총휘발성유기화합물, 이산화질소, 라돈 등이 높은 농도로 검출되었으며, 이는 지하역사 내부에 그 오염물질의 발생요소가 존재하기 때문으로 판단된다. 오존 농도는 지상역사에서 지하역사보다 높은 농도로 검출되었으며, 특히 외부로 노출되어있는 지상역사 승강장에서 높은 농도를 보임으로써 외기 유입에 의한 영향이 있는 것으로 확인되었다. 따라서, 외기에 의한 영향을 받는 오염물질은 역사의 기계환기시 제거 과정을 거쳐 오염물질의 실내유입을 차단하고, 지하역사에서 기인한 미세먼지 등의 물질들은 실내에서 그 발생원에 따른 별도의 처리가 필요할 것으로 판단된다.

Keywords

References

  1. Annual transport performance of urban rail [Internet]. National Index System, Available from: http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1259 (accessed Feb, 25, 2016)
  2. The Ministry of Environment in Korea, The Act of Indoor Air Quality Management in Multiplex facility, 2004 (Act No.12216, 2014.1.7. Amendment)
  3. The Ministry of Environment in Korea, The Enforcement Rules of the Act of Indoor Air Quality Management in Multiplex facility, [Attached table 2], [Attached table 3], 2015 (No. 620, 2015.11.18., Amendment)
  4. Park, J. H., Park, J. C. and Um, S. J., Estimation of diffusion direction and velocity of PM10 in a subway station(for Gaehwasan station of subway line 5 in seoul), Journal of Korean Society of Transportation, 28(5), pp.55-64, 2010.
  5. Son, Y. S., Salama, A., Jeong, H. S., Kim, S., Jeong, J. H., Lee, J., Sunwoo, Y. and Kim, J. C., The effect of platform screen doors on PM10 levels in a subway station and a trial to reduce PM10 in tunnels, Asian Journal of Atmospheric Environment, 7(1), pp.38-47, 2013. DOI: http://dx.doi.org/10.5572/ajae.2013.7.1.038
  6. Martins, V., Moreno,T., Minguillon, M. C., van Drooge, B. L., Reche, C., Amato, F., de Miguel, E., Capdevila, M., Centelles, S. and Querol, X., Origin of inorganic and organic components of PM2.5 in subway station of Barcelona, Spain. Environmental Pollution, 208, pp.125-136, 2016. DOI: http://dx.doi.org/10.1016/j.envpol.2015.07.004
  7. Park, D. U., Yun, K. S., Park, S. T. and Ha, K. C., Characterization of PM10 and PM2.5 levels inside tratin and in platform of subway, Kor. J. Env. Hlth., 31(1), pp.39-46, 2005.
  8. Park, S. B. S. N., Lee, T. J., Ko, H. K., Bae, S. J., Kim, S. D., Park, D. S., Sohn, J. R. and Kim, D. S., Identification of PM10 chemical characteristics and sources and estimation of their contributions in a Seoul metropolitan subway station, Journal of Korean Society for Atmospheric Environment, 29(1), pp.74-85, 2013. DOI: http://dx.doi.org/10.5572/KOSAE.2013.29.1.74
  9. Won, S. R., Lim, J. Y., Shim, I. K., Kim, E. J., Choi, A. R., Han, J. S. and Lee, W. S., Characterization of PM2.5 and PM10 concentration distribution at public facilities in Korea. Journal of Korean Society for Indoor Environment, 9(3), pp.229-238, 2012.
  10. The Ministry of Environment, the second measures to improve air quality in underground station during 5 years(2013-2017), 2013.
  11. Cheng, Y. H., Lin, Y. L. and Liu, C. C., Levels of PM10 and PM2.5 in Taipei rapid transit system. Atmospheric Environment, 42, pp.7242-4249, 2008. DOI: http://dx.doi.org/10.1016/j.atmosenv.2008.07.011
  12. Kam, W., Cheung, K., Daher, N. and Sioutas, C., Particulate mateer (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro, Atmospheric Environment, 45, pp.1506-1516, 2011. DOI: http://dx.doi.org/10.1016/j.atmosenv.2010.12.049
  13. Lee, J. Y., Jang, K. J. and Han, H., Study of pollution concentration source and its change pattern in underground station. Conference of the Society of Air-conditioning and Refrigerating Engineers of Korea, pp.547-550, 2012.
  14. Son, B. S., Jang, B. K., Park, J. A. and Kim, Y. S., Indoor and outdoor NO2 concentrations at subway station and personal NO2 exposure of subway station workers. Korean J. Sanitation, 15(4), pp.134-141, 2000.
  15. Moreno, T. Perez, N., Reche, C., Martins, V., de Miguel, E., Capdevila, M., Centelles, S., Minguillon, M. C., Amato, F., Alastuey, A., Querol, X. and Gibbons, W., Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design, Atmospheric Environment, 92, pp.461-468, 2014. DOI: http://dx.doi.org/10.1016/j.atmosenv.2014.04.043
  16. The public homepage of real-time air pollution, AirKorea, [Internet], Seoul (Korea), The Ministry of Environment, Available From: http://www.airkorea.or.kr, (accessed Mar, 14, 2016)
  17. Kim, T. W., Kim, H. T., Seo, S. M. and Hong, W. H., A study on the measurement and evaluation of indoor air quality in crowd facilitie. Conference of Architectural Institute of Korea, 25(1), pp.471-574, 2005.
  18. Hwang, S. H., Ahn, J. K. and Park, J. B., Concentration of airborne fungi and environmental factors in the subway station in Seoul Korea. J. Environ. Health. Sci., 40(2), pp.81-87, 2014.
  19. Cho, J. H. and Paik, N. W., Assessment of airborne fungi concentrations in subway stations in Seoul, Korea. J. Env. Hlth., 35(6), pp.478-485, 2009. DOI: http://dx.doi.org/10.5668/jehs.2009.35.6.478
  20. Choi, W. G., Bae, S. H., Park, D. S., Jeong, W. S. and Kim, T. O., Evaluation of VOCs in subway. Conference of The Korean Society for Railway, pp.572-576, 2002.
  21. Lee, C. M., Kim, Y. S., Kim, J. C. and Jeon, H. J., Distribution of radon concentration at subway station in Seoul. J. Env. Hlth., 30(5), pp.469-480, 2004.
  22. Jeon, J. S., Yoon, J. C., Lee, H. C., Eom, S. W. and Chae, Y. Z., A noticeable change in indoor radon levels after platform screen doors installation in Seoul subway station. Journal of Korean Society for Atmospheric Environment, 28(1), pp.59-67, 2012. DOI: http://dx.doi.org/10.5572/KOSAE.2012.28.1.059