DOI QR코드

DOI QR Code

Dispersion Characteristics of Hydrogen Gas by the Effect of Leakage Hole Size in Enclosure Space

누출공 크기에 따른 밀폐공간 내 수소 가스의 확산 특성

  • Choi, Jinwook (Department of Mechanical Engineering, Sogang University) ;
  • Li, Longnan (Department of Mechanical Engineering, Sogang University) ;
  • Park, Chul-Woo (Department of Mechanical Engineering, Sogang University) ;
  • Lee, Seong Hyuk (Department of Mechanical Engineering, Chung-ang University) ;
  • Kim, Daejoong (Department of Mechanical Engineering, Sogang University)
  • Received : 2016.04.12
  • Accepted : 2016.05.12
  • Published : 2016.05.31

Abstract

As a potential clean energy resource, the production and consumption of hydrogen gas are expected to gradually increase, so that hydrogen related studies are also increasing. The thermal and chemical properties of hydrogen result in its high flammability; in particular, there is a high risk if leaks occur within an enclosed space. In this study, we applied the computational fluid dynamics method to conduct a numerical study on the leakage behavior of hydrogen gas and compared these numerical study results with an experimental study. The leakage hole diameter was selected as an important parameter and the hydrogen gas dispersion behavior in an enclosed space was investigated through various analytical methods. Moreover, the flammable regions were investigated as a function of the leakage time and leakage hole size. We found that the growth rate of the flammable region increases rapidly with increasing leakage hole size. We also investigated the relation between the mass flow rate and the critical time when the hydrogen gas reaches the ceiling. The analysis of the monitoring points showed that the hydrogen gas dispersion behavior is isotropic and independent of the geometry. We found that the concentration of gas in an enclosed space is affected by both the leakage flow rate and amount of gas accumulated in the enclosure.

수소는 공해가 없는 청정에너지 자원으로, 이를 활용하기 위한 많은 연구가 진행되고 점차 생산 및 소비량이 늘어날 것으로 전망된다. 그러나 수소의 열화학적 특성 상 매우 높은 가연성을 가지며, 특히 밀폐공간에서 수소 가스가 누출되는 경우에 위험성이 높다. 본 연구에서는 전산유체역학 해석기법을 적용하여 밀폐된 공간 내부의 수소가스 누출 현상에 대한 수치해석 연구를 수행하였고, 실험결과와 비교하였다. 또한, 검증된 해석기법을 적용하여 누출공의 크기에 따른 가스 확산 거동에 대하여 해석하고 다양한 기법을 통해 분석하였다. 누출 시간 경과에 따른 공간 내의 가연영역을 누출공 크기 별로 확인하고, 가연영역의 체적분율을 통하여 누출공의 크기가 증가할수록 공간 내부의 가연영역은 급속히 성장함을 확인하였다. 또한 수소 가스의 누출량과 가연영역이 천장까지 성장하는 최소 소요시간 사이의 관계를 도출하였다. 특정 모니터링 지점에서 가스 몰분율 분석을 통해 가스는 형상 규모의 영향을 받지 않고 등방적 특성으로 퍼져나감을 확인하였으며, 특정 지점에서의 가스 농도는 누출구로부터 발생하는 주 유동의 효과와 밀폐공간에서의 가스 누적 효과를 모두 고려해야 함을 알 수 있었다.

Keywords

References

  1. J. Mousavi, M. Parvini, "Analyzing effective factors on leakage-induced hydrogen fires", Journal of Loss Prevention in the Process Industries. 40, pp. 29-42, 2016. https://doi.org/10.1016/j.jlp.2015.12.002
  2. Q. Li, W. Chen, Y. Li, S. Liu, J. Huang, "Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic", Electrical Power and Energy Systems. 43, pp. 514-525, 2012. https://doi.org/10.1016/j.ijepes.2012.06.026
  3. H. Wilkening, D. Baraldi, "CFD modelling of accidental hydrogen release from pipelines", International Journal of Hydrogen Energy. 32, pp. 2206-2215, 2007. https://doi.org/10.1016/j.ijhydene.2007.04.022
  4. E. Kim, J. Park, J.H. Cho, I. Moon, "Simulation of hydrogen leak and explosion for the safety design of hydrogen fueling station in Korea", International Journal of Hydrogen Energy. 38, pp. 1737-1743, 2013. https://doi.org/10.1016/j.ijhydene.2012.08.079
  5. W. Ko, S.K. Kang, Y. Jeong, H. Bang, "Research trends for the ventilation standards for prevention of gas explosion in underground space", The 48th KOSCO Symposium, pp. 25-26, May 2014.
  6. Y.-L. Liu, J.-Y. Zheng, P. Xu, Y.-Z. Zhao, H.-Y. Bie, H.-G. Chen, H. Dryver, "Numerical simulation on the diffusion of hydrogen due to high pressured storage tanks failure", Journal of Loss Prevention in the Process Industries. 22, pp. 265-270, 2009. https://doi.org/10.1016/j.jlp.2008.06.007
  7. J. Choi, N. Hur, S. Kang, E.D. Lee, K.B. Lee, "A CFD simulation of hydrogen dispersion for the hydrogen leakage from a fuel cell vehicle in an underground parking garage", International Journal of Hydrogen Energy. 38 pp. 8084-8091, 2013. https://doi.org/10.1016/j.ijhydene.2013.02.018
  8. K. Takeno, K. Okabayashi, A. Kouchi, T. Nonaka, K. Hashiguchi, K. Chitose, "Dispersion and explosion field tests for 40 MPa pressurized hydrogen", International Journal of Hydrogen Energy. 32 pp. 2144-2153, 2007. https://doi.org/10.1016/j.ijhydene.2007.04.018
  9. S.K Vudumu, U.O. Koylu, "Detailed simulations of the transient hydrogen mixing, leakage and flammability in air in simple geometries", International Journal of Hydrogen Energy. 34 pp. 2824-2833, 2009. https://doi.org/10.1016/j.ijhydene.2009.01.021
  10. J. Zhang, M.A. Delichatsios, A.G. Venetsanos, "Numerical studies of dispersion and flammable volume of hydrogen in enclosures", International Journal of Hydrogen Energy. 35, pp. 6431-6437, 2010. https://doi.org/10.1016/j.ijhydene.2010.03.107
  11. J.M. Lacome, D. Jamois, L. Perrette, C.H. Proust, "Large-scale hydrogen release in an isothermal confined area", International Journal of Hydrogen Energy. 36, pp. 2302-2312, 2011.
  12. M. Moonis, A.J. Wilday, M.J. Wardman, "Semi-quantitative risk assessment of commercial scale supply chain of hydrogen fuel and implications for industry and society", Process Safety and Environmental Protection. 88, pp. 97-108, 2010. https://doi.org/10.1016/j.psep.2009.11.006
  13. J. Zheng, H.-Y Bie, P. Xu, P. Liu, Y.-Z Zhao, H.-G Chen, X. Liu, L. Zhao, "Numerical simulation of high-pressure hydrogen jet flames during bonfire test", International Journal of Hydrogen Energy. 37, pp. 783-790, 2012. https://doi.org/10.1016/j.ijhydene.2011.04.061