DOI QR코드

DOI QR Code

Blast Resistant Early Maturing Rice 'Jungmo1024' with High Temperature Tolerance during Grain Filling Stage

고온조건에서 등숙이 양호하고 도열병에 강한 조생 고품질 벼 '중모1024' 육성

  • 정지웅 (농촌진흥청 국립식량과학원) ;
  • 강경호 (농촌진흥청 국립식량과학원) ;
  • 최임수 (농촌진흥청 국립식량과학원) ;
  • 장재기 (농촌진흥청 국립식량과학원) ;
  • 김명기 (농촌진흥청 국립식량과학원) ;
  • 이점호 (농촌진흥청 국립식량과학원) ;
  • 박향미 (농촌진흥청 국립식량과학원) ;
  • 양창인 (농촌진흥청 국립식량과학원) ;
  • 전용희 (농촌진흥청 국립식량과학원) ;
  • 서정필 (농촌진흥청) ;
  • 최인배 (농촌진흥청 국립식량과학원) ;
  • 정종민 (농촌진흥청 국립식량과학원) ;
  • 성낙식 (농촌진흥청 국립식량과학원) ;
  • 이정희 (농촌진흥청 국립식량과학원) ;
  • 윤미라 (농촌진흥청 국립식량과학원) ;
  • 김정곤 (전라북도농촌진흥원)
  • Received : 2015.11.20
  • Accepted : 2015.12.02
  • Published : 2016.03.31

Abstract

'Jungmo1024' is a blast resistant early maturing rice cultivar with high temperature tolerance during grain filling stage. 'Jungmo1024' was derived from a sodium azide treatment on 'Suweon472', a high yielding japonica elite line which was latterly registered as 'Namil'. Comparison with the agronomical traits of 'Namil', 'Jungmo1024' was uniquely characterized as the induced gained function due to the reduced culm length, increased tiller number, strong blast resistance and especially high temperature tolerance during grain filling stage. The high temperature tolerance of 'Jungmo1024' was supported by two years experiments by comparing the head rice ratio produced in ordinary paddy field and green house condition. The heading date of 'Jungmo1024' was July 29 in central plain area, which was 9 days earlier than that of 'Hwaseong'. The milled rice yield performance of 'Jungmo1024' was about 4.98 MT/ha in local adaptability test for three years. 'Jungmo1024' had 69 cm in culm length, which was 15 cm shorter than that of 'Hwaseong', 20 cm in panicle length, 16 in tiller number, and 22.3g in 1,000 grain-weight of brown rice. 'Jungmo1024' exhibited strong rice blast resistance, but do not have any clear resistance gene sources against bacterial blight, viral diseases and insect fests. 'Jungmo1024', nevertheless, would be a useful rice cultivar could be used as a donor line for the breeding programs for developing southern plane adaptable early maturing rice cultivars with enhanced rice blast resistance, lodging tolerance, and especially high temperature tolerance during grain filling stage.

'중모1024'는 농촌진흥청 국립식량과학원이 돌연변이 육종법을 이용하여 육성한 도열병에 강한 조생 고품질 품종으로 쌀 외관이 양호한 품종이다. '중모1024'는 '남일'에 아지드화나트륨을 처리하여 확보한 돌연변이 후대계통으로 원품종에 비해 단간, 다얼, 강한 도열병 저항성, 특히 고온등숙 내성 등으로 차별화 된다. 일반포장과 온실을 이용한 고온등숙 내성평가에서 '중모1024'는 기존의 조생 품종들에 비해 현미완전미율이 유의하게 높아 돌연변이에 의해 고온등숙 내성인자가 유발되었음을 확인할 수 있었다. 지역적응시험을 3개년(2010~2012)간 수행한 결과, '중모1024'는 중부 평야지에서 보통기 보비재배 시 출수기는 7월 29일로 '화성'보다 9일 빠른 조생종이었다. 쌀수량은 보통기 표준재배에서 4.98 MT/ha로 '화성' 대비 98% 수준이었으며, '오대'보다 1% 증수되었다. '중모1024'의 간장은 '화성'보다 15 cm 작은 69 cm였다. '중모1024'의 이삭길이는 20 cm, 포기당 이삭수는 16개로 '화성'과 유사하거나 약간 많고 현미 천립중은 22.3 g이었다. '중모1024'는 현미 장폭비가 1.91인 단원형이었으며 백미는 심복백 발현이 거의 없어 맑고 투명하였다. '중모1024'의 알카리 붕괴도(6.2), 단백질 함량(6.2%) 및 아밀로스 함량(18.5%)은 '화성'보다 조금 낮았다. '중모1024'의 재배시험과정 중 위조현상은 관찰되지 않았으며 성숙기 하위엽 노화는 늦은 편이었다. '중모1024'는 '화성'에 비해 수발아에 약간 민감하였고 내랭성 평가 중 적고는 나타나지 않았으나 임실율은 다소 낮았다. '중모1024'는 도열병에 강한 저항성을 발현하였으나, 벼흰잎마름병, 줄무늬잎마름병 및 멸구류에는 감수성이었다. 그러나 '중모1024'는 쓰러짐과 도열병에 강하고 쌀 수량성이 안정적일 뿐 아니라, 특히 고온등숙 조건에서 등숙된 쌀의 외관이 맑고 깨끗하기 때문에 향후 미질이 우수하고 도열병저항성이 강화된 평야지 적응 벼 조생품종을 개발하기 위한 중간모본으로 활용될 수 있을 것으로 판단된다(품종보호권 등록번호: 제5103호; 2014. 7. 31).

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Cho SW, Jeung JU, Kang KH, Kim HS, Kim BK. 2015. Evaluation on early-maturing Korean japonica cultivars for high-tempeature tolerance during grain filling stage. Korean J. Crop Sci. 60: 146-152. https://doi.org/10.7740/kjcs.2015.60.2.146
  2. Cho SW, Jeung JU, Shin YS, Kang KH, Lee SB, Kim BK. 2014a. Genetic analysis on the rice blast and brown planthopper resistance of Namil(EMS)-bl10,bph1, a japonica rice mutant line. Korean J. Breed. Sci. 46: 226-237. https://doi.org/10.9787/KJBS.2014.46.3.226
  3. Cho SW, Jeung JU, Shin YS, Kang KH, Lee SB, Kim BK. 2014b. Genetic analysis on short culm and the rice blast resistance of Namil(SA)-bl5, a japonica mutant line. Korean J. Breed. Sci. 46: 228-249.
  4. Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M. 2009. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol. 50: 1911-1922. https://doi.org/10.1093/pcp/pcp135
  5. Hakata M, Kuroda M, Miyashita T, Yamaguchi T, Kojima M, Sakakibara H, Mitsui T, Yanakawa H. 2012. Suppression of ${\alpha}$-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnol. J. 10: 1110-1117. https://doi.org/10.1111/j.1467-7652.2012.00741.x
  6. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14: 9643-9684 https://doi.org/10.3390/ijms14059643
  7. Jagadish SVK, Craufurd PQ, Wheeler TR. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 58: 1627-1635. https://doi.org/10.1093/jxb/erm003
  8. Jena KK, Jeung JU, Lee JH, Choi HC, Brar DS. 2006. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor. Appl. Genet. 112: 288-297. https://doi.org/10.1007/s00122-005-0127-8
  9. Jeung JU, Choi BJ, Kang KH, Mo YJ, Lee SB, Oh SK, Kim BK. 2014. Genetic analysis on the blast resistance gene of 'Suweon506' derived from a wild relative, Oryze minuta. Korean J. Breed. Sci. 46: 17-27. https://doi.org/10.9787/KJBS.2014.46.1.017
  10. Jeung JU, Hwang HG, Moon HP, Jena KK. 2005. Fingerprinting template japonica and tropical indica rice genotypes by comparative analysis of DNA markers. Euphytica. 146: 239-251.
  11. Jeung JU, Kim BR, Cho YC, Han SS, Moo HP, Lee YT Jena KK. 2007. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor. Appl. Genet. 115: 1163-1177. https://doi.org/10.1007/s00122-007-0642-x
  12. Jeung JU, Roh TH, Kang KH, Jeong JM, Kim KM, Kim YG. 2011. Genetic analysis on the bacterial blight resistance of Suweon497, a rice breeding line developed through wide Hybridization. Korean J. Breed. Sci. 43: 81-91.
  13. Kim BR, Roh JH, Choi SH, Ahn SW, Han SS. 2004. Durability of rice cultivars to blast in Korea by sequential planting method. Korean J. Breed. Sci. 36: 350-356.
  14. Kim CS, Lee JS, Ko JY, Yun ES, Yeo US, Lee JH, Kwak DY, Shin MSm, Oh BG. 2007. Evaluation of optimum rice heading period under recent climate change in Yeongnam area. Korean J. Agri. & Forest Meteorology. 9: 17-28. https://doi.org/10.5532/KJAFM.2007.9.1.017
  15. Kim HY, Kang KH, Hwang HG, Moon HP, Choi IS. 2003. A semi-early maturing, high yielding and processing japonica rice cultivar "Namilbyeo". Treat. Of Crop Res. 4: 141-148.
  16. Kim JD, Chang JK, Sohn JK, Choi J. 2000. Inheritance of lodging tolerance in rice. Korean. J. Breed. Sci. 32: 194-198.
  17. Kim JH, Shon JY, Yoon YH, Choi KJ, Lee CK. 2013. Study on improving high-temperature tolerance for grain filling through adjusting sink size, Korean J. Crop Sci. 58: 107-112. https://doi.org/10.7740/kjcs.2013.58.2.107
  18. Ko JK, Park HK, Kang SG, Kato H, Ishii T, Nemoto H, Sakai M, Satou K, Ando I, Kim BK. 2014. Comparison of rice grain yield and quality of different maturity groups by cultivating in Korea and Japan. Korean J. Int. Agric. 26: 353-359. https://doi.org/10.12719/KSIA.2014.26.4.353
  19. Kobayashi A, Genliang B, Shenghai Y, Tomira K. 2007. Detection of Quantitative Trait Loci for white-back and basal-white kernels under high temperature stress in japonica rice varieties. Breed. Sci. 57: 107-116 https://doi.org/10.1270/jsbbs.57.107
  20. Lee CH, Kim JH, Shon JH, Yang WH, Yoon YH, Choi KJ, Kim KS. 2012. Impact of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean J. Agri. & Forest Meteorology. 14: 207-221. https://doi.org/10.5532/KJAFM.2012.14.4.207
  21. Lee CK, Kwak KS, Kim JH, Son JY, Yang WH. 2011. Impact of climate change and follow-up cropping season shift on growing period and temperature in different rice maturity types. Korean J. Crop Sci. 56: 233-243. https://doi.org/10.7740/kjcs.2011.56.3.233
  22. Lee JH, Park DS, Kwak DY, Yeo US, Song YC, Kim CS, Jeon MG, Oh BG, MS Shin, Kim JK. 2008. Yield and grain quality of early maturing rice cultivars as affected by early transplanting in Yeongnam plain area. Korean J. Crop Sci. 53: 326-332.
  23. Mo YJ, Jeung JU, Kang KH, Lee JS, Kim BK. 2013a. Genetic analysis on floury endosperm mutant characteristics of 'Namil(SA)-flo1', a japonica rice mutant line. Korean J. Crop Sci. 58: 283-291. https://doi.org/10.7740/kjcs.2013.58.3.283
  24. Mo YJ, Jeung JU, Shin WC, Kim KI, Ye C, Redona ED, Kim BK. 2014. Effects of allelic variations in starch synthesis-related genes on grain quality traits of Korean nonglutinous rice varieties under different temperature conditions. Breeding Science 64: 1-12. https://doi.org/10.1270/jsbbs.64.1
  25. Mo YJ, Jeung JU, Shin YS, Park CS, Kang KH, Kim BK. 2013b. Agronomic and genetic analysis of Suwon542, a rice floury mutant line suitable for dry milling. Rice. 6: 37. https://doi.org/10.1186/1939-8433-6-37
  26. Morita S. 2005. The occurrences of immature grain with white portions and deep ditch, and grain weight decrease in rice under high temperature during ripening. J. of Agri. Sci. 60: 442-446.
  27. Morita S. 2011.The countermeasure and damage under the high temperature during ripening of rice. Noubunkyo. p.143.
  28. Phan TTT, Ishibashi Y, Miyazaki M, Tran HT, Okamura K, Tanaka S, Nakamura J, Yuasa T, Iwaya-Inoue M. 2013. High temperature-induced repression of the rice sucrose transporter (OsSUT1) and starch synthesis-related genes in sink and source organs at milky ripening stage causes chalky grains. J. of Agron. and Crop Sci. 199: 178-188. https://doi.org/10.1111/jac.12006
  29. Rahman ML, Chu SH, Choi MS, Qiao YL, Jiang W, Piao R, Khanam S, Cho YI, Jeung JU, Jena KK, Koh HJ. 2007. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta. Mol. Cells 24: 16-26.
  30. Rahman ML, Jiang W, Chu SH, Qiao Y, Ham TH, Woo MO, Lee JH, Khanam MS, Chin JH, Jeung JU, Brar DS, Jena KK, Ko HJ. 2009. High-resolution mapping of two rice brown planthopper resistant genes, Bph20(t) and Bph21(t), originating from Oryza minuta. Theor. Appl. Genet. 119: 1237-1246. https://doi.org/10.1007/s00122-009-1125-z
  31. RDA. 2010. 2010 Project plan for collaborative research program to develop new variety summer crop. pp.5-52.
  32. RDA. 2011. 2011 Project plan for collaborative research program to develop new variety summer crop. pp.5-44.
  33. RDA. 2012a. 2012 Project plan for collaborative research program to develop new variety summer crop. pp.3-49.
  34. RDA. 2012b. Agricultural science and technological research standard evaluation handbook. p.321.
  35. Seong DG, Kim YG, Cho YC, Shin HY, Kim MC, Shim SI, Chung JI, Kim SH, Kim CS, Chung JS. 2014. J. Agri. & Life Sci. 48: 1-9.
  36. Shin YS, Jeon YH, Kang KY, Seo YW, Jeung JU. 2009b. Variation of agronomic traits of rice mutant lines induced by sodium azide. Korean J. Breed. Sci. 41: 92-100.
  37. Shin YS, Jeung JU. 2011. Genetic diversity of the rice mutant lines induced by sodium azide. Korean J. Breed. Sci. 43: 23-31.
  38. Shin YS, Park CS, Seo YW, Jeung JU. 2009a. Characterization of endosperm starch of the rice mutant lines induced by sodium azide. Korean J. Breed. Sci. 41: 84-91.
  39. Suh JP, Jeung JU, Kim YG, Jena KK, Cho YC, Lee JH, Kim MK, Hong HC, Lee JH, Kim JJ, Choi IS, Jeong EG, Hwang HG, Oh SK, Yang CI, Shin MS. 2014. A brown planthopper resistant and high gain quality rice variety 'Anmi' developed by molecular breeding method. Korean J. Breed. Sci. 46: 152-159. https://doi.org/10.9787/KJBS.2014.46.2.152
  40. Takahashi W. 2006. The cultivation management of immature grain with white portions under high-temperature condition of Koshihikari. Agri. Horti. 81: 1012-1018.
  41. Wakamatsu K, Sasaki O, Uezono I, Tanaka A. 2008.Effect of the amount of nitrogen application on occurrence of white-back kernels during ripening of rice under high-temperature conditions. Jpn. J. Crop Sci. 77: 424-433. https://doi.org/10.1626/jcs.77.424
  42. Xiong LZ, Liu KD, Dai XK, Xu CG, Zhang Q. 1999. Identification of genetic factors controlling domesticationrelated traits of rice using an $F_2$ population of a cross between Oryza sativa and O. rufipogon. Theor. Appl. Genet. 98: 243-251. https://doi.org/10.1007/s001220051064
  43. Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. 2007. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol. 144: 258-277. https://doi.org/10.1104/pp.107.098665
  44. Yun SH & Lee JT. 2001. Climate change impacts on optimum ripening periods of rice and its countermeasure in rice cultivation. Korean J. of Agricultural and Forest Meteorology. 3: 55-70.