DOI QR코드

DOI QR Code

Development of the Evaluation System for Mineral Resources Security

광물자원 안보수준 평가체계 개발

  • 김주한 (한양대학교 자원환경공학과) ;
  • 김진수 (한양대학교 자원환경공학과) ;
  • 홍태기 (한양대학교 자원환경공학과) ;
  • 김유정 (한국지질자원연구원 자원전략연구실) ;
  • 김대형 (한국지질자원연구원 자원전략연구실)
  • Received : 2016.04.07
  • Accepted : 2016.06.29
  • Published : 2016.06.30

Abstract

This paper suggests an evaluation system for minerals security. It is very hard to find a literature on the mineral security while numerous studies have been conducted for the concept and indices of energy security. We thus try to develop a quantitative evaluation system for mineral security reviewing previous literatures on energy security, security index, and resources security. We also consider demand and supply status of minerals in Korea. The proposed evaluation model based on a criticality matrix can numerically evaluate a mineral security level and comparative analysis among minerals is also possible through the model. An effective and efficient decision making can be possible through the proposed model.

본 연구에서는 광물 및 금속 자원의 안보수준을 평가하기 위한 평가체계를 제안하였다. 국내외적으로 다양한 연구가 이루어진 에너지 분야와는 다르게 광물 분야의 안보를 정량적으로 평가한 연구는 제한적이며 국내연구는 전무하다. 이에 본 연구에서는 에너지를 중심으로 개발된 정량적 평가체계와 광물에 관한 선행연구를 비교 분석하여 한국의 광물 수급구조에 적합하고 정책적 활용성이 높은 자원안보 평가체계를 제안하였다. 본 논문에서 제안한 위험도 매트릭스 기반 평가체계는 각 광종의 안보수준을 정량적으로 측정할 수 있으며 광종 간 상대비교가 가능하다. 따라서 향후 광물자원의 정책수립에 있어 본 논문에서 제안한 평가체계가 활용된다면 보다 효과적이고 효율적인 의사결정이 가능할 것으로 기대된다.

Keywords

Acknowledgement

Grant : 자원 통계구축 및 산업생산성 분석 연구

Supported by : 한국지질자원연구원

References

  1. Achzet, B. and Helbig, C., 2013, "How to evaluate raw material supply risks-an overview," Resources Policy, Vol. 38, No. 4, pp. 435-447. https://doi.org/10.1016/j.resourpol.2013.06.003
  2. Andersson, B.A., 2000, "Materials availability for large-scale thin‐film photovoltaics," Progress in photovoltaics: Research and Applications, Vol. 8, No. 1, pp. 61-76. https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<61::AID-PIP301>3.0.CO;2-6
  3. Buijs, B. and Sievers, H., 2011, Critical thinking about critical minerals, Bundesanstalt fur Geowissenschaften und Rohstoffe & Clingendael, Germany.
  4. DOE, 2010, Critical materials strategy, US Department of Energy, Washington DC, USA,
  5. EC, 2010, Critical raw materials for the EU, European Commission (Enterprise and Industry), Brussels, Belgium.
  6. EC, 2014, Report on Critical raw materials for the EU, Technical Report, European Commission (Enterprise and Industry), Brussels, Belgium.
  7. Erdmann, L. and Graedel, T.E., 2011, "Criticality of non-fuel minerals: A review of major approaches and analyses," Environmental science & technology, Vol. 45, No. 18, pp. 7620-7630. https://doi.org/10.1021/es200563g
  8. Erdmann, L., Behrendt, S. and Feil, M., 2011, Kritische Rohstoffe fur Deutschland, KfW, Bankengruppe, Berlin.
  9. Gloser, S., Espinoza, L.T., Gandenberger, C., Faulstich, M., 2015, "Raw material criticality in the context of classical risk assessment," Resources Policy, Vol. 44, pp. 35-46. https://doi.org/10.1016/j.resourpol.2014.12.003
  10. Graedel, T.E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., Friedlander, E., Henly, C., Jun, C. and Nassar, N.T., 2011, "Methodology of metal criticality determination," Environmental science & technology, Vol. 46, No. 2, pp. 1063-1070.
  11. Hatayama, H. and Tahara, K., 2015, "Evaluating the sufficiency of japan׳s mineral resource entitlements for supply risk mitigation," Resources Policy, Vol. 44, pp. 72-80. https://doi.org/10.1016/j.resourpol.2015.02.004
  12. Heo, E., Kim, J. and Boo, K.-J., 2010. "Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP," Renewable and Sustainable Energy Reviews, Vol. 14, pp. 2214-2220 https://doi.org/10.1016/j.rser.2010.01.020
  13. IEA, 2001. Toward a sustainable energy future, International Energy Agency, Paris, France.
  14. IEA, 2011. The iea model of short-term energy security (moses). International Energy Agency, Paris, France.
  15. Jackson, Taylor, and Kenneth P. Green, 2016, Fraser Institute Annual Survey of Mining Companies, Fraser Institute, Vancouver, Canada.
  16. Jo, Y.H., 2008. "A study on the computation of energy vulnerability index : Focusing on the oil energy," Ajou University.
  17. Johansson, B., 2013, "A broadened typology on energy and security," Energy, Vol. 53, pp. 199-205. https://doi.org/10.1016/j.energy.2013.03.012
  18. KEEI, 2015, Yearbook of Energy Statics, Korea Energy Economics Institute, Ulsan, Korea.
  19. KIGAM, 2015, Mineral commodity supply and demand, Korea Institute of Geoscience and Mineral Resources, Deajeon, Korea.
  20. Kim, Y.-J. and Kim, D.-H., 2012. "Development of target-management indicators for national resource security," Journal of the Korean Society for Geosystem Engineering, Vol. 49, No. 1, pp. 59-67.
  21. Kruyt, B., van Vuuren, D.P., De Vries, H. and Groenenberg, H., 2009, "Indicators for energy security," Energy Policy, Vol. 37, No. 6, pp. 2166-2181 https://doi.org/10.1016/j.enpol.2009.02.006
  22. Kwon, Y.M., 2010, "An analysis on the qualitative evaluation factors of on-line game company using delphi and ahp(analytic hierarchy process)," The Korean Society for Computer Game, Vol. 2, No. 23, pp. 13-22.
  23. Nassar, N.T., Barr, R., Browning, M., Diao, Z., Friedlander, E., Harper, E., Henly, C., Kavlak, G., Kwatra, S. and Jun, C., 2011, "Criticality of the geological copper family," Environmental science & technology, Vol. 46, No. 2, pp. 1071-1078.
  24. NEDO, 2009, Trends report of development in materials for substitution of scarce metals, New Energy and Industrial Technology Development Organization, Kanagawa, Japan.
  25. NRC, 2008, Minerals, Critical Minerals, and the U.S. Economy, US National Research Council, Washington, D.C., U.S.A.
  26. Oakdene Hollins, 2013, Study on Critical Raw Materials for the EU Level, Oakdene Hollins Research & Consulting, UK.
  27. Sai, R., Furubayashi, T., Nakata, T., 2015, "A multi-objective analysis for a quantitative evaluation of national energy security," 38th IAEE International Conference, Antalya, Turkey.
  28. Sohn, I., 2005, "Long-term projections of non-fuel minerals: We were wrong, but why?," Resources Policy, Vol. 30, No. 4, pp. 259-284. https://doi.org/10.1016/j.resourpol.2006.03.002
  29. Sovacool, B.K., Mukherjee, I., Drupady, I.M. and D'Agostino, A.L., 2011, "Evaluating energy security performance from 1990 to 2010 for eighteen countries," Energy, Vol. 36, No. 10, pp. 5846-5853. https://doi.org/10.1016/j.energy.2011.08.040
  30. Tornow, D., Buchholz, P., Riemann, A. and Wagner, M., 2009, "Assessing the long-term supply risks for mineral raw materials—a combined evaluation of past and future trends," Resources Policy, Vol. 34, No. 4, pp. 161-175. https://doi.org/10.1016/j.resourpol.2009.07.001
  31. UNEP, 2011, Recycling rates of metals: a status report., United Nations Environment Programme, Paris, France
  32. U.S. Chamber of Commerce, 2014, Index of U.S. Energy security risk,. U.S. Chamber of Commerce, Washington, D.C., U.S.A.
  33. USGS, 2016, Mineral commodity summaries 2016, US Geological Survey, Virginia, U.S.A.
  34. WEC, 2014, 2014 energy trilemma index, World Energy Council, London, UK.
  35. Yergin, D., 2006, "Ensuring energy security," Foreign Affairs- New York-, Vol. 85, No. 2, p. 69. https://doi.org/10.2307/20031912
  36. Zhang, H.-Y., Ji, Q. and Fan, Y., 2013, "An evaluation framework for oil import security based on the supply chain with a case study focused on china," Energy Economics, Vol. 38, pp. 87-95. https://doi.org/10.1016/j.eneco.2013.03.014