DOI QR코드

DOI QR Code

Performance analysis of legacy line communication using high current powerlines in midrange wind turbines

중형급 풍력 발전기내 전력선을 이용한 무배선 통신 성능분석

  • Received : 2015.12.14
  • Accepted : 2016.04.17
  • Published : 2016.05.31

Abstract

This paper presents an implementation of a communication network in wind turbines, which exploits the power-line communication system (PLC). We used an inductive coupling unit and a multi-interface device to connect a data-communication terminal to the power line, to ensure that stable communication was possible at various electric current and voltage values of the generator. The results of the operation tests conducted on an operational wind turbine showed that the implemented PLC demonstrated a transmission rate of at least 43 Mbps with a 100% success rate. Moreover, a real-time image was transmitted. Thus, the system could be a useful alternative for implementing a communication network in wind turbines that does not require additional channels. Since the presented system is easy to implement, and can support various interfaces for data communication, it will be quite useful when a real-time monitoring system is launched in wind turbines.

본 논문에서는 풍력 발전기 내 기 설치된 전력선을 통신 선로로 사용하여 통신 네트워크를 구축하는 기술인 무배선 감시 시스템을 제안한다. 전력선과 데이터통신 기기의 연결을 위하여 발전기의 다양한 전류 및 전압 변화에서도 안정적인 통신이 가능한 유도성 결합장치와 복합통신장치를 사용하였다. 실제 운영되고 있는 풍력 발전기를 대상으로 선로 특성분석을 통해 전력선 통신의 구축 가능성을 확인 후 영상 전송 시스템을 구현하였다. 구현된 전력선 통신 시스템은 43Mbps 이상의 전송속도를 제공하고, 통신 성공률은 100%로 실시간 비디오 영상 전송이 가능함을 확인했다. 따라서 제시된 시스템은 통신 선로의 추가 설치 없이도 풍력 발전기에 통신 네트워크 구축이 가능하며, 전력선 통신 네트워크 기반의 실시간 감시 시스템을 도입하는 경우 매우 효과적일 것으로 기대된다.

Keywords

References

  1. Global Wind Energy Council, http://www.gwec.net/wp-content/uploads/vip/GWEC-PRstats-2015_LR.pdf, Accessed May 23, 2016.
  2. German Wind Energy Association, https://www.wind-energie.de/sites/default/files/download/publication/yearbook-wind-energy-2015/wem_2015.pdf, Accessed May 23, 2016.
  3. Korea Institute of S&T Evaluation and Planning, https://www.google.co.kr/webhp?tab=Tw&ei=oUtCV8iaB8G_mwWx4K2YAw&ved=0EKkuCAQoAQ#q=Green-tech+Research%2C+Korea+Institute+of+S%26T+Evaluation+and+Planning(KISTEP)%2C+2011, Accessed May 23, 2016.
  4. C. C. Ciang, J. R. Lee, and H. J. Bang, "Structural health monitoring for a wind turbine: a review of damage detection methods," Measurement Science and Technology, vol. 19, no. 12, p. 122001, 2008. https://doi.org/10.1088/0957-0233/19/12/122001
  5. H. G. Kim, S. G. Lee, and K. S. Han, "Global status of wind energy market and industry," Journal of Wind Energy, vol. 4, no. 2, pp. 5-11, 2013.
  6. I. S, Yang, S. W. Kim, and N. H. Kyung, "A classification of the wind turbine accident," Journal of the Korean Salar Energy Society, vol. 25, no. 4, pp. 29-35, 2005.
  7. A. L. Pattener, "SCADA and communication networks for large scale offshore wind power systems," Proceeding of Renewable Power Generation, pp. 1-6, 2011.
  8. W. Yang, P. J. Tavner, C. J. Crabtree, Y. Feng, and Y. Qiu, "Wind turbine condition monitoring: technical and commercial challenges," WIND ENERGY, vol. 17, no. 5, pp. 673-693, 2012. https://doi.org/10.1002/we.1508
  9. H. S. Kim, S. H. Park, and S. G. Kang, "Development of communication joint tools for implementing a legacy-line communication system in a train," Journal of the Korean Institute of Information and Communication Engineering, vol. 19, no. 4, pp. 877-887, 2015. https://doi.org/10.6109/jkiice.2015.19.4.877
  10. H. S. Kim and S. G. Kang, "A powerline-based legacy-line communication system for implementation of a communication network in ship," Journal of the Korean Institute of Information and Communication Engineering, vol. 19, no. 8, pp. 1831-1838, 2015. https://doi.org/10.6109/jkiice.2015.19.8.1831
  11. Y. J. Lin, H. Latchman, and M. Lee, "A power line communication network infrastructure for the smart home," IEEE Wireless Communications, vol. 9, no. 46, pp. 104-111, 2002. https://doi.org/10.1109/MWC.2002.1160088

Cited by

  1. 비접촉식 유도성 결합기를 이용한 다중경로 전력선 채널 특성 vol.40, pp.9, 2016, https://doi.org/10.5916/jkosme.2016.40.9.799