DOI QR코드

DOI QR Code

Antimicrobial, Antioxidant and Cytotoxic Activities of Dendropanax morbifera Léveille extract for mouthwash and denture cleaning solution

  • Kim, Ryeo-Woon (Department of Prosthodontics, School of Dentistry, Chosun University) ;
  • Lee, Sook-Young (Regional Innovation Center for Dental Science & Engineering, Chosun University) ;
  • Kim, Su-Gwan (Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University) ;
  • Heo, Yu-Ri (Department of Prosthodontics, School of Dentistry, Chosun University) ;
  • Son, Mee-Kyoung (Department of Prosthodontics, School of Dentistry, Chosun University)
  • Received : 2015.09.01
  • Accepted : 2015.12.14
  • Published : 2016.06.30

Abstract

PURPOSE. The purpose of this study was to analyze the antimicrobial, antioxidant activity and cytotoxicity of Dendropanax morbifera $L{\acute{e}}veille$ extract for assessing whether Dendropanax morbifera $L{\acute{e}}veille$ can be used for the development of natural mouthwash and denture cleaning solution. MATERIALS AND METHODS. The extract was obtained from branches of Dendropanax morbifera $L{\acute{e}}veille$. The solvent fractions were acquired by fractionating Dendropanax morbifera $L{\acute{e}}veille$ extract using n-hexane, ethyl acetate, chloroform and butanol solvent. Paper disc test was used to evaluate the antimicrobial and antifungal activity of Dendropanax morbifera $L{\acute{e}}veille$ extract and solvent fractions against Streptococcus mutans and Candida albicans. The analysis of antioxidant activity was carried out through DPPH radical scavenging assay. The cytotoxicity of Dendropanax morbifera $L{\acute{e}}veille$ extract was analyzed through MTT assay using normal human oral keratinocytes. RESULTS. Dendropanax morbifera $L{\acute{e}}veille$ extract showed antimicrobial activity against Streptococcus mutans and especially Candida albicans. The solvent fractions of Dendropanax morbifera $L{\acute{e}}veille$ showed strong antimicrobial activity against Streptococcus mutans and Candida albicans in n-hexane and butanol solvent fraction, respectively. Dendropanax morbifera $L{\acute{e}}veille$ extract also showed outstanding antioxidant activity. Butanol, ethyl acetate, and chloroform solvent fraction of Dendropanax morbifera $L{\acute{e}}veille$ tended to have increased antioxidant activity as the concentration increased. Dendropanax morbifera $L{\acute{e}}veille$ extract showed high cell survival rate in cytotoxicity test. CONCLUSION. Dendropanax morbifera $L{\acute{e}}veille$ extract turned out to have antimicrobial, antioxidant activity and cytophilicity. Based on these results, it is expected that Dendropanax morbifera $L{\acute{e}}veille$ is applicable as an ingredient for natural mouthwash and denture cleanser.

Keywords

References

  1. Glass RT, Conrad RS, Bullard JW, Goodson LB, Mehta N, Lech SJ, Loewy ZG. Evaluation of microbial flora found in previously worn prostheses from the Northeast and Southwest regions of the United States. J Prosthet Dent 2010;103:384-9. https://doi.org/10.1016/S0022-3913(10)60083-2
  2. Budtz-Jorgensen E. The significance of Candida albicans in denture stomatitis. Scand J Dent Res 1974;82:151-90.
  3. Baena-Monroy T, Moreno-Maldonado V, Franco-Martinez F, Aldape-Barrios B, Quindos G, Sanchez-Vargas LO. Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. Med Oral Patol Oral Cir Bucal 2005;10:E27-39.
  4. Campos MS, Marchini L, Bernardes LA, Paulino LC, Nobrega FG. Biofilm microbial communities of denture stomatitis. Oral Microbiol Immunol 2008;23:419-24. https://doi.org/10.1111/j.1399-302X.2008.00445.x
  5. Ramage G, Tomsett K, Wickes BL, Lopez-Ribot JL, Redding SW. Denture stomatitis: a role for Candida biofilms. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;98:53-9. https://doi.org/10.1016/j.tripleo.2003.04.002
  6. Caton JG, Blieden TM, Lowenguth RA, Frantz BJ, Wagener CJ, Doblin JM, Stein SH, Proskin HM. Comparison between mechanical cleaning and an antimicrobial rinse for the treatment and prevention of interdental gingivitis. J Clin Periodontol 1993;20:172-8. https://doi.org/10.1111/j.1600-051X.1993.tb00340.x
  7. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981-2002. J Nat Prod 2003;66:1022-37. https://doi.org/10.1021/np030096l
  8. Lee SH, Park YS, Hwang B, Kim JH, Lee HY. Screening of immune activation activities in the Leaves of Dendropanax morbifera Lev. Korean J Med Crop Sci 2002;10:109-15.
  9. Hyun TK, Kim MO, Lee H, Kim Y, Kim E, Kim JS. Evaluation of anti-oxidant and anti-cancer properties of Dendropanax morbifera Leveille. Food Chem 2013;141:1947-55. https://doi.org/10.1016/j.foodchem.2013.05.021
  10. Moon HI. Antidiabetic effects of dendropanoxide from leaves of Dendropanax morbifera Leveille in normal and streptozotocin-induced diabetic rats. Hum Exp Toxicol 2011;30:870-5. https://doi.org/10.1177/0960327110382131
  11. Chung IM, Kim MY, Park WH, Moon HI. Antiatherogenic activity of Dendropanax morbifera essential oil in rats. Pharmazie 2009;64:547-9.
  12. Chung IM, Song HK, Kim SJ, Moon HI. Anticomplement activity of polyacetylenes from leaves of Dendropanax morbifera Leveille. Phytother Res 2011;25:784-6. https://doi.org/10.1002/ptr.3336
  13. Lee CK, Kim H, Moon KH, Shin KH. Screening and isolation of antibiotic resistance inhibitors from herb materials-resistance inhibition of volatile components of Korean aromatic herbs. Arch Pharm Res 1998;21:62-6. https://doi.org/10.1007/BF03216754
  14. Park YK, Lee WY, Ahn JK. Current review on the study of antioxidants developments from forest resources. Trend Agric Life Sci 2006;4:1-13.
  15. Wikins TD, Holdeman LV, Abramson IJ, Moore WE. Standardized single-disc method for antibiotic susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother 1972;1:451-9. https://doi.org/10.1128/AAC.1.6.451
  16. Brand-Williams W, Cuvelier M, Berset C. Use of a free radical method to evaluate antioxidant activity. Technol 1995;28:25-30.
  17. Pratten J, Smith AW, Wilson M. Response of single species biofilms and microcosm dental plaques to pulsing with chlorhexidine. J Antimicrob Chemother 1998;42:453-9. https://doi.org/10.1093/jac/42.4.453
  18. Gjermo P. Chlorhexidine and related-compounds. J Dent Res 1989;68:1602-8.
  19. Kim H, Song MJ. Analysis and recordings of orally transmitted knowledge about medicinal plants in the southern mountainous region of Korea. J Ethnopharmacol 2011;134:676-96. https://doi.org/10.1016/j.jep.2011.01.024
  20. Islam B, Khan SN, Khan AU. Dental caries: from infection to prevention. Med Sci Monit 2007;13:RA196-203.
  21. Kulak Y, Arikan A, Kazazoglu E. Existence of Candida albicans and microorganisms in denture stomatitis patients. J Oral Rehabil 1997;24:788-90. https://doi.org/10.1046/j.1365-2842.1997.00550.x
  22. Im GP. Jeong HJ, Lee JS. Studies on the Technical Improvement to use "Hwangchil-traditional Korean golden varnish" and the diversified uses of Dendropanax morbiera Lev.. 2nd Report. Korean Ministry of Science and Technology; Korea; 1996. p. 1-257.
  23. Baek DH. Screening of the natural plant extracts for the antimicrobial activity on dental pathogens. Korean J Microbiol 2007;43:227-31.
  24. Otake S, Makimura M, Kuroki T, Nishihara Y, Hirasawa M. Anticaries effects of polyphenolic compounds from Japanese green tea. Caries Res 1991;25:438-43. https://doi.org/10.1159/000261407
  25. Smullen J, Koutsou GA, Foster HA, Zumbe A, Storey DM. The antibacterial activity of plant extracts containing polyphenols against Streptococcus mutans. Caries Res 2007;41:342-9. https://doi.org/10.1159/000104791
  26. Kim HR, Chung HJ. Chemical characteristics of the leaves and the seeds of Korean Dendropanax (Dendropanax morbifera Lev.). J Korean Soc Agric Chem Biotechnol 2000;43:63-6.
  27. Yanagida A, Kanda T, Tanabe M, Matsudaira F, Oliveira Cordeiro JG. Inhibitory effects of apple polyphenols and related compounds on cariogenic factors of mutans streptococci. J Agric Food Chem 2000;48:5666-71. https://doi.org/10.1021/jf000363i
  28. Son HY, Kim EJ, Gwon YS, Gwon GS, Jin IR, Gwon HY, Gwon JS, Son GH. Screening of anti-candidiosis agent from medicinal and wild plants. J Life Sci 2003;13:604-17. https://doi.org/10.5352/JLS.2003.13.5.604
  29. Coleman JJ, Okoli I, Tegos GP, Holson EB, Wagner FF, Hamblin MR, Mylonakis E. Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol 2010;5:321-32. https://doi.org/10.1021/cb900243b
  30. Zou Y, Liao S, Shen W, Liu F, Tang C, Chen CY, Sun Y. Phenolics and antioxidant activity of mulberry leaves depend on cultivar and harvest month in Southern China. Int J Mol Sci 2012;13:16544-53. https://doi.org/10.3390/ijms131216544
  31. Hong SG, Jeong DM, Kim KY, Hwang EH. The composition of the root of Ixeris dentate var. albiflora Nakai. and cell viability and DPPH radical scavenging activities of tist extract. Korean J Nutr 2010;43:105-13. https://doi.org/10.4163/kjn.2010.43.2.105
  32. Shin IC, Jeong KJ, Shim TH, Oh HS, Park SK, Cheung EH, Kim SN, Kim GG, Choi DS, Kwon YS, Kim CM, Sa JH. Catechin content and antioxidative effect from Rosa davurica Pall. Korean J Pharmacogn 2002;33:177-81.
  33. Jang JR, Hwang SY, Lim SY. Inhibitory effect of extracts of Platycodon grandiflorum (the ballon flower) on oxidation and nitric oxide production. Korean J Food Preserv 2011;18:65-71. https://doi.org/10.11002/kjfp.2011.18.1.065
  34. Helgeland K, Heyden G, Rolla G. Effect of chlorhexidine on animal cells in vitro. Scand J Dent Res 1971;79:209-15.
  35. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 1987;47:936-42.
  36. Park SA, Park J, Park CI, Jie YJ, Hwang YC, Kim YH, Jeon SH, Lee HM, Ha JH, Kim KJ, Park SM. Cellular antioxidant activity and whitening effects of Dendropanax morbifera leaf extracts. Korean J Microbiol Biotechnol 2013;41:407-15. https://doi.org/10.4014/kjmb.1311.11001

Cited by

  1. Effects of Dendropanax morbifera Léveille extract on hypothyroidism-induced oxidative stress in the rat hippocampus vol.25, pp.6, 2016, https://doi.org/10.1007/s10068-016-0268-3
  2. on Postmenopausal Symptoms: Review Article vol.23, pp.3, 2017, https://doi.org/10.6118/jmm.2017.23.3.146
  3. Anti-osteoporotic effects of mixed compositions of extracellular polymers isolated from Aureobasidium pullulans and Textoria morbifera in ovariectomized mice vol.18, pp.1, 2018, https://doi.org/10.1186/s12906-018-2362-y
  4. Water Extracts in Mouse 3T3-L1 Cells vol.21, pp.8, 2018, https://doi.org/10.1089/jmf.2017.4154
  5. Prevents Cardiomyocyte Hypertrophy by Inhibiting the Sp1/GATA4 Pathway vol.46, pp.05, 2018, https://doi.org/10.1142/S0192415X18500532
  6. Polyacetylene From Dendropanax morbifera Alleviates Diet-Induced Obesity and Hepatic Steatosis by Activating AMPK Signaling Pathway vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00537
  7. leaf extracts in ovariectomized rats pp.01458884, 2018, https://doi.org/10.1111/jfbc.12548
  8. Dendropanax morbifera Branch Water Extract Increases the Immunostimulatory Activity of RAW264.7 Macrophages and Primary Mouse Splenocytes vol.22, pp.11, 2016, https://doi.org/10.1089/jmf.2019.4424
  9. Antimicrobial Effects against Oral Pathogens and Cytotoxicity of Glycyrrhiza uralensis Extract vol.9, pp.7, 2016, https://doi.org/10.3390/plants9070838
  10. Dendropanax Morbiferus and Other Species from the Genus Dendropanax: Therapeutic Potential of Its Traditional Uses, Phytochemistry, and Pharmacology vol.9, pp.10, 2016, https://doi.org/10.3390/antiox9100962
  11. Comparisons of the Anti-Inflammatory Activity of Dendropanax morbifera LEV Leaf Extract Contents Based on the Collection Season and Concentration of Ethanol as an Extraction Solvent vol.10, pp.23, 2016, https://doi.org/10.3390/app10238756
  12. Antihyperuricemic Effect of Dendropanax morbifera Leaf Extract in Rodent Models vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/3732317
  13. Panos-Fermented Extract-Mediated Nanoemulsion: Preparation, Characterization, and In Vitro Anti-Inflammatory Effects on RAW 264.7 Cells vol.27, pp.1, 2016, https://doi.org/10.3390/molecules27010218