DOI QR코드

DOI QR Code

Evaluation of translucency of monolithic zirconia and framework zirconia materials

  • Tuncel, Ilkin (Department of Prosthodontics, Faculty of Dentistry, Bezmialem Vakif University) ;
  • Turp, Isil (Department of Prosthodontics, Faculty of Dentistry, Bezmialem Vakif University) ;
  • Usumez, Aslihan (Department of Prosthodontics, Faculty of Dentistry, Bezmialem Vakif University)
  • Received : 2015.09.01
  • Accepted : 2016.02.15
  • Published : 2016.06.30

Abstract

PURPOSE. The opacity of zirconia is an esthetic disadvantage that hinders achieving natural and shade-matched restorations. The aim of this study was to evaluate the translucency of non-colored and colored framework zirconia and monolithic zirconia. MATERIALS AND METHODS. The three groups tested were: non-colored framework zirconia, colored framework zirconia with the A3 shade according to Vita Classic Scale, and monolithic zirconia (n=5). The specimens were fabricated in the dimensions of $15{\times}12{\times}0.5mm$. A spectrophotometer was used to measure the contrast ratio, which is indicative of translucency. Three measurements were made to obtain the contrast ratios of the materials over a white background ($L^*w$) and a black background ($L^*b$). The data were analyzed using the one-way analysis of variance and Tukey HSD tests. One specimen from each group was chosen for scanning electron microscope analysis. The determined areas of the SEM images were divided by the number of grains in order to calculate the mean grain size. RESULTS. Statistically significant differences were observed among all groups (P<.05). Non-colored zirconia had the highest translucency with a contrast ratio of 0.75, while monolithic zirconia had the lowest translucency with a contrast ratio of 0.8. The mean grain sizes of the non-colored, colored, and monolithic zirconia were 233, 256, and 361 nm, respectively. CONCLUSION. The translucency of the zirconia was affected by the coloring procedure and the grain size. Although monolithic zirconia may not be the best esthetic material for the anterior region, it may serve as an alternative in the posterior region for the bilayered zirconia restorations.

Keywords

References

  1. Joiner A. Tooth colour: a review of the literature. J Dent 2004;32:3-12.
  2. Dietschi D. Layering concepts in anterior composite restorations. J Adhes Dent 2001;3:71-80.
  3. Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 1996;75:18-32. https://doi.org/10.1016/S0022-3913(96)90413-8
  4. Spear F, Holloway J. Which all-ceramic system is optimal for anterior esthetics? J Am Dent Assoc 2008;139:19S-24S.
  5. Raptis NV, Michalakis KX, Hirayama H. Optical behavior of current ceramic systems. Int J Periodontics Restorative Dent 2006;26:31-41.
  6. Kingery WD, Bowen HK, Uhlmann DR. Introduction to ceramics. 2nd ed. New York; John Wiley and Sons; 1976. p. 646-89.
  7. Pecho OE, Ghinea R, Ionescu AM, Cardona JC, Della Bona A, Perez Mdel M. Optical behavior of dental zirconia and dentin analyzed by Kubelka-Munk theory. Dent Mater 2015;31:60-7. https://doi.org/10.1016/j.dental.2014.11.012
  8. Brodbelt RH, O'Brien WJ, Fan PL. Translucency of dental porcelains. J Dent Res 1980;59:70-5. https://doi.org/10.1177/00220345800590011101
  9. Clarke FJ. Measurement of color of human teeth. In: McLean JW, editor. Proceedings of the first international symposium on ceramics. Chicago; Quintessence; 1983. p. 441-90.
  10. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent 2002;88:4-9.
  11. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent 2009;4:130-51.
  12. Fernandez-Oliveras A, Pecho OE, Rubino M, Perez MM. Measurements of scattering anisotropy in dental tissue and zirconia ceramic. Proc SPIE 2012;8427:48.
  13. Harianawala HH, Kheur MG, Apte SK, Kale BB, Sethi TS, Kheur SM. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. J Adv Prosthodont 2014;6:456-61. https://doi.org/10.4047/jap.2014.6.6.456
  14. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Effect of zirconia type on its bond strength with different veneer ceramics. J Prosthodont 2008;17:401-8. https://doi.org/10.1111/j.1532-849X.2008.00306.x
  15. Hjerppe J, Narhi T, Froberg K, Vallittu PK, Lassila LV. Effect of shading the zirconia framework on biaxial strength and surface microhardness. Acta Odontol Scand 2008;66:262-7. https://doi.org/10.1080/00016350802247123
  16. Pecho OE, Ghinea R, Ionescu AM, Cardona Jde L, Paravina RD, Perez Mdel M. Color and translucency of zirconia ceramics, human dentine and bovine dentine. J Dent 2012;40:e34-40. https://doi.org/10.1016/j.jdent.2012.08.018
  17. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005;21:984-91. https://doi.org/10.1016/j.dental.2005.03.013
  18. Kim HK, Kim SH. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent Mater 2014;30:e229-37. https://doi.org/10.1016/j.dental.2014.04.008
  19. Stawarczyk B, Emslander A, Roos M, Sener B, Noack F, Keul C. Zirconia ceramics, their contrast ratio and grain size depending on sintering parameters. Dent Mater J 2014;33:591-8. https://doi.org/10.4012/dmj.2014-056
  20. Zirkonzahn web site. Available from: http://www.zirkonzahn.com/en/prettau-zirconia/prettau-zirconia. Accessed 27 March, 2016.
  21. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307. https://doi.org/10.1016/j.dental.2007.05.007
  22. Rhodes WH. Controlled transient solid second-phase sintering of yttria. J Am Ceram Soc 1981;64:13-9. https://doi.org/10.1111/j.1151-2916.1981.tb09551.x
  23. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater 2014;30:e419-24. https://doi.org/10.1016/j.dental.2014.09.003
  24. Chevalier J, Deville S, Munch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 2004;25:5539-45. https://doi.org/10.1016/j.biomaterials.2004.01.002
  25. Ruiz L, Readey MJ. Effect of heat treatment on grain size, phase assemblage, and mechanical properties of 3 mol% Y-TZP. J Am Ceram Soc 1996;79:2331-40. https://doi.org/10.1111/j.1151-2916.1996.tb08980.x
  26. Scott HG. Phase relationships in the zirconia-yttria system. J Mater Sci 1975;10:1527-35. https://doi.org/10.1007/BF01031853
  27. Casolco SR, Xu J, Garay JE. Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors. Scr Mater 2008;58:516-9. https://doi.org/10.1016/j.scriptamat.2007.11.014
  28. Lee YK, Cha HS, Ahn JS. Layered color of all-ceramic core and veneer ceramics. J Prosthet Dent 2007;97:279-86. https://doi.org/10.1016/j.prosdent.2007.03.010
  29. O'Brien WJ, Johnston WM, Fanian F. Double-layer color effects in porcelain systems. J Dent Res 1985;64:940-3. https://doi.org/10.1177/00220345850640061801
  30. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hammerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig 2013;17:269-74. https://doi.org/10.1007/s00784-012-0692-6
  31. Jiang L, Liao Y, Wan Q, Li W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci Mater Med 2011;22:2429-35. https://doi.org/10.1007/s10856-011-4438-9
  32. Tekeli S, Erdogan M. A quantitative assessment of cavities in 3 mol% yttria-stabilized tetragonal zirconia specimens containing various grain size. Ceram Int 2002;28:785-9. https://doi.org/10.1016/S0272-8842(02)00044-5
  33. Peelen JGJ, Metselaar R. Light scattering by pores in polycrystalline materials: Transmission properties of alumina. J Appl Phys 1974;45:216-20. https://doi.org/10.1063/1.1662961
  34. Zhang HB, Kim BN, Morita K, Yoshida H, Lim JH, Hiraga K. Optimization of high-pressure sintering of transparent zirconia with nano-sized grains. J Alloy Compd 2010;508:196-9. https://doi.org/10.1016/j.jallcom.2010.08.045
  35. Kim MJ, Ahn JS, Kim JH, Kim HY, Kim WC. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency. J Adv Prosthodont 2013;5:161-6. https://doi.org/10.4047/jap.2013.5.2.161
  36. Anselmi-Tamburini U, Woolman JN, Munir ZA. Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure Ppulsed electric current sintering. Adv Funct Mater 2007;17:3267-73. https://doi.org/10.1002/adfm.200600959
  37. Hayashi K, Kobayashi O, Toyoda S, Morinaga K. Transmission optical properties of polycrystalline alumina with submicron grains. Mater Trans JIM 1991;32:1024-9. https://doi.org/10.2320/matertrans1989.32.1024
  38. Apetz R, van Bruggen MPB. Transparent alumina: A light-scattering model. J Am Ceram Soc 2003;86:480-6. https://doi.org/10.1111/j.1151-2916.2003.tb03325.x
  39. Tuncel I, Eroglu E, Sari T, Usumez A. The effect of coloring liquids on the translucency of zirconia framework. J Adv Prosthodont 2013;5:448-51. https://doi.org/10.4047/jap.2013.5.4.448
  40. Prettau data sheet. Available from: http://www.zirkonzahn.com/assets/files/anleitungen-informationen-studien/INT-Data-sheet-Prettau-Zirconia.pdf. Accessed 22 July 2015.
  41. ICE Zirkon translucent data sheet. Available from: http://www.zirkonzahn.com/assets/files/anleitungen-informationen-studien/INT-Data-sheet-ICE-Zirkon-Translucent.pdf. Accessed: 22 July 2015.
  42. Antonson SA, Anusavice KJ. Contrast ratio of veneering and core ceramics as a function of thickness. Int J Prosthodont 2001;14:316-20.
  43. Wang F, Takahashi H, Iwasaki N. Translucency of dental ceramics with different thicknesses. J Prosthet Dent 2013;110:14-20. https://doi.org/10.1016/S0022-3913(13)60333-9
  44. Kurtulmus-Yilmaz S, Ulusoy M. Comparison of the translucency of shaded zirconia all-ceramic systems. J Adv Prosthodont 2014;6:415-22. https://doi.org/10.4047/jap.2014.6.5.415
  45. Spyropoulou PE, Giroux EC, Razzoog ME, Duff RE. Translucency of shaded zirconia core material. J Prosthet Dent 2011;105:304-7. https://doi.org/10.1016/S0022-3913(11)60056-5
  46. Liu MC, Aquilino SA, Lund PS, Vargas MA, Diaz-Arnold AM, Gratton DG, Qian F. Human perception of dental porcelain translucency correlated to spectrophotometric measurements. J Prosthodont 2010;19:187-93. https://doi.org/10.1111/j.1532-849X.2009.00542.x

Cited by

  1. Use of Digital Smile Design in esthetic restoration in anterior teeth: A case report vol.55, pp.2, 2017, https://doi.org/10.4047/jkap.2017.55.2.164
  2. Nanocrystalline Powders in ZrO2–Y2O3–CeO2–Al2O3–CoO System for Microstructural Design of ZrO2-Bazed Color Composites vol.56, pp.7-8, 2017, https://doi.org/10.1007/s11106-017-9910-8
  3. Color in Zirconia-Based Restorations and Related Factors: A Literature Review vol.27, pp.2, 2018, https://doi.org/10.1111/jopr.12740
  4. Mica glass ceramics for dental restorations pp.1753-5557, 2018, https://doi.org/10.1080/10667857.2018.1494240
  5. Optical properties of contemporary monolithic CAD-CAM restorative materials at different thicknesses pp.14964155, 2018, https://doi.org/10.1111/jerd.12382
  6. Color Aspect of Monolithic Zirconia Restorations: A Review of the Literature pp.1059941X, 2018, https://doi.org/10.1111/jopr.12906
  7. The color masking ability of a zirconia ceramic on the substrates with different values vol.11, pp.1, 2016, https://doi.org/10.15171/joddd.2017.002
  8. Effect of glazing and aging on optical properties of high-translucency zirconia vol.44, pp.4, 2016, https://doi.org/10.14815/kjdm.2017.44.4.319
  9. Effect of thickness of monolithic zirconia ceramic on final color vol.120, pp.2, 2016, https://doi.org/10.1016/j.prosdent.2017.10.007
  10. Comparison of translucency for different thicknesses of recent types of esthetic zirconia ceramics versus conventional ceramics … (in vitro study) vol.4, pp.2, 2018, https://doi.org/10.1016/j.fdj.2018.05.003
  11. 3M LavaTM Esthetic monolithic zirconia를 이용한 전치부 심미 수복 증례 vol.34, pp.4, 2018, https://doi.org/10.14368/jdras.2018.34.4.306
  12. Effects of veneering porcelain thickness and background shade on the shade match of zirconia-based restorations vol.13, pp.1, 2019, https://doi.org/10.15171/joddd.2019.011
  13. Monolithic Zirconia: An Update to Current Knowledge. Optical Properties, Wear, and Clinical Performance vol.7, pp.3, 2016, https://doi.org/10.3390/dj7030090
  14. High bonding strength between zirconia and composite resin based on combined surface treatment for dental restorations vol.18, pp.None, 2020, https://doi.org/10.1177/2280800020928655
  15. Influence of core color on final shade reproduction of zirconia crown in single central incisor situation – An in vivo study vol.12, pp.1, 2016, https://doi.org/10.4317/jced.56401
  16. Does the application of surface treatments in different sintering stages affect flexural strength and optical properties of zirconia? vol.32, pp.1, 2020, https://doi.org/10.1111/jerd.12552
  17. The effects of repetitive firing processes on the optical, thermal, and phase formation changes of zirconia vol.12, pp.1, 2020, https://doi.org/10.4047/jap.2020.12.1.9
  18. Translucency of Monolithic Zirconia after Hydrothermal Aging: A Review of In Vitro Studies vol.29, pp.6, 2016, https://doi.org/10.1111/jopr.13174
  19. A Digitally Driven Full Mouth Rehabilitation Protocol of a Patient with Hypoplastic Amelogenesis Imperfecta vol.9, pp.38, 2016, https://doi.org/10.14260/jemds/2020/622
  20. Effect of different cement systems and aging on the bond strength of chairside CAD-CAM ceramics vol.125, pp.2, 2016, https://doi.org/10.1016/j.prosdent.2019.11.025
  21. Microstructural changes and fracture resistance of nano-crystalline monolithic zirconia restorations upon aging vol.1046, pp.1, 2021, https://doi.org/10.1088/1757-899x/1046/1/012013
  22. Step-by-Step Esthetic Rehabilitation with Chairside System vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5558158
  23. 3차원 Digital Smile Design을 활용한 전치부 심미수복 증례 vol.59, pp.4, 2016, https://doi.org/10.4047/jkap.2021.59.4.451
  24. Spectrophotometric study determining staining tendency in different restorative materials (longitudinal in vitro study) vol.33, pp.7, 2016, https://doi.org/10.1016/j.sdentj.2020.11.004