DOI QR코드

DOI QR Code

Evaluation of TOF MR Angiography and Imaging for the Half Scan Factor of Cerebral Artery

유속신호증강효과의 자기공명혈관조영술을 이용한 뇌혈관검사에서 Half Scan Factor 적용한 영상 평가

  • Choi, Young Jae (Department of Radiology, Seoul National University Boramae Hospital) ;
  • Kweon, Dae Cheol (Department of Radiological Science, College of Health Science, Shinhan University)
  • 최영재 (서울대학교보라매병원 영상의학과) ;
  • 권대철 (신한대학교 보건과학대학 방사선학과)
  • Received : 2016.05.23
  • Accepted : 2016.06.14
  • Published : 2016.06.30

Abstract

To aim of this study was to assess the full scan and half scan of imaging with half scan factor. Patients without a cerebral vascular disease (n = 30) and were subject to the full scan half scan, and set a region of interest in the cerebral artery from the three regions (C1, C2, C3) in the range of 7 to 8 mm. MIP (maximum intensity projection) to reconstruct the images in signal strength SNR (signal to noise ration), PSNR (peak signal noise to ratio), RMSE (root mean square error), MAE (mean absolute error) and calculated by paired t-test for use by statistics were analyzed. Scan time was half scan (4 minutes 53 seconds), the full scan (6 minutes 04 seconds). The mean measurement range (7.21 mm) of all the ROI in the brain blood vessel, was the SNR of the first C1 is completely scanned (58.66 dB), half-scan (62.10 dB), a positive correlation ($r^2=0.503$), for the second C2 SNR is completely scanned (70.30 dB), half-scan (74.67 dB) the amount of correlation ($r^2=0.575$), third C3 of a complete scan SNR (70.33 dB), half scan SNR (74.64 dB) in the amount of correlation between the It was analyzed with ($r^2=0.523$). Comparative full scan with half of SNR ($4.75{\pm}0.26dB$), PSNR ($21.87{\pm}0.28dB$), RMSE ($48.88{\pm}1.61$), was calculated as MAE ($25.56{\pm}2.2$). SNR is also applied to examine the half-scans are not many differences in the quality of the two scan methods were not statistically significant in the scan (p-value > .05) image takes less time than a full scan was used.

신호증강효과기법을 이용한 자기공명혈관술에서 뇌동맥을 half scan factor에 따른 절반스캔과 완전스캔의 영상을 평가하는데 목적으로 한다. 뇌혈관성 질환이 없는 환자(n = 30)를 대상으로 절반스캔과 완전스캔 하였고, 뇌동맥의 관심영역을 세 영역(C1, C2, C3)에서 7~8 mm의 범위로 설정하였다. MIP로 재구성한 영상으로 신호강도를 SNR(signal to noise ration), PSNR(peak signal noise to ratio), RMSE(root mean square error), MAE(mean absolute error)을 산출하고 paired t-test를 이용하여 통계분석 하였다. 스캔시간은 절반스캔(4분 53초), 완전스캔(6분 04초)이었다. 뇌혈관의 모든 ROI의 평균 측정 범위(7.21 mm)이었고, 첫번째 C1의 SNR은 완전스캔(58.66 dB), 절반스캔(62.10 dB)이었고, 양의 상관관계($r^2=0.503$)이고, 두 번째 C2의 SNR은 완전스캔(70.30 dB), 절반스캔(74.67 dB)이고 양의 상관관계($r^2=0.575$)이었다. 세 번째 C3의 완전스캔 SNR(70.33 dB), 절반스캔 SNR (74.64 dB)로 양의 상관관계를 ($r^2=0.523$)로 분석되었다. 절반스캔과 완전스캔의 비교에서 SNR($4.75{\pm}0.26dB$), PSNR($21.87{\pm}0.28dB$), RMSE($48.88{\pm}1.61$)이었고 MAE($25.56{\pm}2.2$)로 산출되었다. SNR은 두 검사 스캔에서 통계학적으로 유의하지 않았고 (p-value > .05) 영상의 질에서는 많은 차이가 없어 완전스캔을 사용하였을 때보다 적은 시간이 소요되는 절반스캔을 적용하여 검사하여도 된다.

Keywords

References

  1. J. H. Kim, J. Kor. Phys. Ther. 24, 73 (2012). https://doi.org/10.1589/jpts.24.73
  2. H. B. Shim, H. Y. Cho, and W. H. Choi, J. Kor. Phys. Ther. 26, 33 (2014). https://doi.org/10.1589/jpts.26.33
  3. L. S. Babiarz, J. M. Romero, E. K. Murphy, B. Brobeck, P. W. Schaefer, R. G. Gonzlez, and M. H. Lev, Am. J. Neuroradiol. 30, 761 (2009). https://doi.org/10.3174/ajnr.A1464
  4. J. Alvarez Linera, J. Benito-Len, J. Escribano, J. Campollo, and R. Gesto, Am. J. Neuroradiol. 24, 1012 (2003).
  5. H. G. Kim, J. Radiol. Sci. Technol. 33, 223 (2010).
  6. J. H. Lee, T. S. Chung, K. Y. Lee, and S. H. Suh, J. Korean Soc. Magn. Reson. Med. 15, 234 (2011). https://doi.org/10.13104/jksmrm.2011.15.3.234
  7. J. J. Yang, M. D. Hill, W. F. Morrish, M. E. Hudon, P. A. Barber, A. M. Demchunk, R. J. Sevick, and R. Frayne, Am. J. Neuroradiol. 23, 557 (2002).
  8. H. P. van Heesewijk, J. A. Vos, E. S. Louwerse, J. C. van den Berg, T. T. Overtoom, S. M. Ernst, H. W. Mauser, F. L. Moll, and R. G. Ackerstaff, Radiology 224, 361 (2002). https://doi.org/10.1148/radiol.2242011302
  9. P. J. Nederkoorn, O. E. Elgersma, Y. van der Graaf, B. C. Eikelboom, L. J. Kappelle, and W. P. Mali, Radiology 228, 677 (2003). https://doi.org/10.1148/radiol.2283020824
  10. L. Remonda, P. Senn, A. Barth, M. Arnold, K. O. Loevblad, and G. Schroth, Am. J. Neuroradiol. 23, 213 (2002).
  11. G. Donald and M. D. Mitcheel, Mathematical Principles of magnetic resonance imaging to read without official, Korean Medical Book (2000) pp. 279-291.
  12. D. Saloner, Radiographics 15, 453 (1995). https://doi.org/10.1148/radiographics.15.2.7761648
  13. S. E. Ghrare, M. A. M. Ali, M. Ismail, and K. Jumari, European J. Sci. Res. 23, 6 (2008).
  14. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Third Edition, Prentice Hall (2008).
  15. J. Masuda, T. Nabika, and Y. Notsu, Curr. Opin. Neurol. 14, 77 (2001). https://doi.org/10.1097/00019052-200102000-00012
  16. D. A. Feinberg, J. D. Hale, J. C. Watts, L. Kaufman, and A. Mark, Radiology 161, 527 (1986). https://doi.org/10.1148/radiology.161.2.3763926
  17. M. L. Wood and V. M. Runge, Radiology 169, 326, (1988).
  18. Y. S. Han, S. C. Lee, D. Y. Lee, J. Choi, J. W. Lee, and D. C. Kweon, J. Magn. 21, 115 (2016). https://doi.org/10.4283/JMAG.2016.21.1.115
  19. T. H. Chen, G. Hong, and S. H. Wang, Pakistan J. Inform Technol. 2, 213 (2003) https://doi.org/10.3923/itj.2003.213.230
  20. D. G. Nishimura, Magn. Reson. Med. 14, 194 (1990). https://doi.org/10.1002/mrm.1910140206
  21. V. M. Runge and M. L. Wood, Am. J. Neuroradiol. 11, 77 (1990).

Cited by

  1. Blood Flow Measurement with Phase Contrast MRI According to Flip Angle in the Ascending Aorta vol.26, pp.4, 2016, https://doi.org/10.4283/JKMS.2016.26.4.142
  2. Measurement of MRI Monitor Luminance and MRI Room Illuminance with a Light Probe vol.26, pp.5, 2016, https://doi.org/10.4283/JKMS.2016.26.5.168