Influencing Parameters on Mineral Carbonation using Waste Concrete

폐콘크리트를 활용한 광물탄산화 공정의 영향인자

  • Lee, Sangmin (Department of Environmental Engineering, Kongju National University) ;
  • Kim, Yeonjin (Department of Environmental Engineering, Kongju National University) ;
  • Kim, Jin Man (Department of Architectural Engineering, Kongju National University) ;
  • Lee, Chul Ho (Department of Chemical Engineering, Kongju National University) ;
  • Jeon, Jong Ki (Department of Chemical Engineering, Kongju National University) ;
  • Chang, Won Seok (Korea District Heating Corporation R&D Institute)
  • 이상민 (국립공주대학교 환경공학과) ;
  • 김연진 (국립공주대학교 환경공학과) ;
  • 김진만 (국립공주대학교 건축공학부) ;
  • 이철호 (국립공주대학교 화학공학부) ;
  • 전종기 (국립공주대학교 화학공학부) ;
  • 장원석 (한국지역난방공사 기술연구소)
  • Received : 2016.04.27
  • Accepted : 2016.06.17
  • Published : 2016.06.30

Abstract

The purpose of this study is to derive influencing parameters on mineral carbonation processes using waste concrete. To evaluate the safety of use of waste concrete which is construction wastes, the hazards of waste concrete were evaluated using the Korean standard leaching test method and the TCLP method of the EPA and according to the results, the waste concrete satisfied the regulatory standards for heavy metals of South Korea under both conditions. Carbon dioxide mineral carbonation reaction processes were carried out using waste concrete. During the processes, changes in pH and calcium concentrations in $CO_2$ adsorbent and $CO_2$ concentrations in the emission gases were continuously measured. During the reactions, mixed gases containing 5% carbon dioxide were continuously supplied and waste concrete eluate used as an absorbent was supplied as batches. Although the break-through time of $CO_2$ adsorbent could be extended depending on the mixed gas linear velocities and $CO_2$ concentrations, the amounts of $CO_2$ removed by the break-through time were more sensitively affected by changes in the calcium concentration and pH in the eluate of waste concrete than by linear velocity or $CO_2$ concentrations in the mixed gases. Changes in the linear velocities (0.029~0.118 cm/s) of inflows of the mixed gases with carbon dioxide, the calcium and magnesium elution characteristics of the waste according to pH changes the effects of batch type reactions and continuous reactions on $CO_2$ removal were investigated. In the batch type experiment, the $CO_2$ removal rate was the highest at 1.221 g when the mixed gas linear velocity was 0.018 cm/s. When waste concrete supernatant was continuously injected at rates of 40 and 20 ml/min, $CO_2$ removal rates were shown to be 3.319 and 2.764 g respectively and the final pHs were measured as 9.8 and 8.3 respectively. To analyze the physical and chemical properties of waste concrete, the chemical components of waste concrete were analyzed and the microstructure of waste concrete was investigated using XRF, SEM and EDS. Calcium concentration and pH had more sensitive effect on the $CO_2$ removal compared to the $CO_2$ concentration in inflow gas and mixed gas linear velocity.

본 연구는 폐콘크리트를 활용한 광물탄산화 공정의 영향인자 도출에 대한 연구로 건설폐기물인 폐콘크리트의 사용의 안전성을 평가하기 위해 국내 중금속 용출법과 EPA의 TCLP법을 이용하여 폐콘크리트의 유해성 평가를 수행한 결과 두 조건 모두 중금속 규제기준을 만족하였다. 폐콘크리트를 이용한 이산화탄소 광물탄산화 반응을 수행하였으며 반응 중 pH 및 이산화탄소 흡수액 중 칼슘농도 변화 및 배출가스 내 이산화탄소 농도를 연속적으로 측정하였다. 반응 중 5% 이산화탄소 혼합가스는 연속적으로 공급되었고 흡수제로 사용한 폐콘크리트 용출액은 회분식으로 공급되었다. 이산화탄소 혼합가스의 유입 선속도(0.029~0.118 cm/s) 변화, pH 변동에 따른 폐콘리트의 칼슘 및 마그네슘의 용출특성, 회분식과 연속식 반응 형태가 따른 이산화탄소 제거에 미치는 영향을 조사했다. 회분식 실험에서 혼합가스 선속도 0.018 cm/s에서 $CO_2$ 제거량이 1.221 g으로 가장 높았으며 40 and 20 ml waste concrete supernatant/min 연속주입 시 $CO_2$ 제거량은 각각 3.319 g, 2.764 g으로 나타났고, 최종 pH는 각각 9.8과 8.3으로 측정되었다. 폐콘크리트의 물리화학적 특성분석을 위해 XRF, SEM 및 EDS를 이용한 폐콘크리트의 화학적 성분분석과 미세구조를 조사하였다. 혼합가스 선속도 및 유입 $CO_2$ 농도에 따라 $CO_2$ 흡수제의 파과시간의 연장이 가능하나 파과시간까지의 $CO_2$ 제거량은 선속도나 혼합가스 내 $CO_2$ 농도보다 폐콘크리트 용출액 내 칼슘의 농도 및 pH의 변화가 더 민감한 영향을 주었다.

Keywords

Acknowledgement

Grant : 광물탄산화 기술을 통한 배가스 내 CO2 제거 및 부산물 활용방안 연구

Supported by : 한국지역난방공사

References

  1. Sipila, J., Teir, S., and Zevenhoven, R., Carbon dioxide sequestration by mineral carbonation: Literature review update, 2005-2007, Report VT2008-1, Abo akademi university (2008).
  2. "Trends in Atmospheric Carbon Dioxide," http://www.esrl.noaa.gov/ (February, 2015)
  3. Jos, G.J., Olivier, Greet Janssens-Maenhout, Jeroen A.H.W. Peters, Trends in global $CO_2$ emissions, Report pp. 29-30 (2012).
  4. Oelkers, E. H., Gislason, S. R., and Matter, J., "Mineral carbonation of $CO_2$," Elements, 4, 333-337 (2012).
  5. Huijgen, W. J. J., Witkamp, G. J., and Comans, R. N. J., "Mineral $CO_2$ sequestration by steel slag carbonation," Environmental Science and Technology, 39, 9676-9682 (2005). https://doi.org/10.1021/es050795f
  6. Chae, S. C., Jang, Y. N., and Ryu, K. W., "Mineral Carbonation as a sequestration method of $CO_2$," Journal of the Geological Society of Korea, 45(5), 527-555 (2009).
  7. Katsuyama, Y., Yamasaki, A., Iizuka, A., Fujii, M., Kumagai, K., and Yanagisawa, Y., "Development of a process for producing high-purity calcium carbonate ($CaCO_3$) from waste cement using pressurized $CO_2$," Environmental Progress, 24, 162-170 (2005). https://doi.org/10.1002/ep.10080
  8. Chen, Z. Y., O'Connor, W. K., and Gerdemann, S. J., "Chemistry of aqueous mineral carbonation for carbon sequestration and explanation of experimental results," Environmental Progress, 25, 161-166 (2006). https://doi.org/10.1002/ep.10127
  9. Bobicki, E. R., Liu, Q., Xu, Z., and Zeng, H., "Carbon capture and storage using alkaline industrial wastes," Progress in Energy and Combustion Science, 38(2), 302-320 (2012). https://doi.org/10.1016/j.pecs.2011.11.002
  10. Jo, H. Y., Ahn, J. H., and Jo, H., "Evaluation of the $CO_2$ sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions," Journal of Hazardous materials, 241, 127-136 (2012).
  11. Iizuka, A., Fujii, M., Yamasaki, A., and Yanagisawa, Y., "Development of a new $CO_2$ sequestration process utilizing the carbonation of waste cement," Industrial Engineering Chemical Research, 43, 7880-7887 (2004). https://doi.org/10.1021/ie0496176
  12. Goodbrake, C. J., Young, J. F., and Berger, R. L., "Reaction of Hydraulic Calcium Silicates with Carbon Dioxide and Water," J. Am. Ceram. Soc., 62, 488 (1979). https://doi.org/10.1111/j.1151-2916.1979.tb19112.x
  13. Goto, S., Suenaga, K., Kado, T., and Fukuhara, M., "Calcium silicate carbonation products," J. Am. Ceram. Soc., 78, 2867 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb09057.x
  14. Fernandez Bertos, M., Simons, S. J. R., Hills, C. D., and Carey, P. J., "A review of accelerated carbonation technology in the treatment of cementbased materials and sequestration of $CO_2$," J. Hazard. Mater., 112, 193 (2004). https://doi.org/10.1016/j.jhazmat.2004.04.019
  15. Sormeh, K. H. and Subhasis, G., "$CO_2$ sequestration in concrete through accelerated carbonation curing in a flow-through reactor", Ind. Eng. Chem. Res., 49, 1143-1149 (2010). https://doi.org/10.1021/ie900703d