DOI QR코드

DOI QR Code

Seasonal Assessment of Biomass and Fatty Acid Productivity by Tetraselmis sp. in the Ocean Using Semi-Permeable Membrane Photobioreactors

  • Kim, Z-Hun (National Marine Bioenergy R&D Center & Department of Biological Engineering, Inha University) ;
  • Park, Hanwool (National Marine Bioenergy R&D Center & Department of Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (National Marine Bioenergy R&D Center & Department of Biological Engineering, Inha University)
  • Received : 2016.01.14
  • Accepted : 2016.03.09
  • Published : 2016.06.28

Abstract

A green microalga, Tetraselmis sp., was cultivated in the coastal seawater of Young-Heung Island using semi-permeable membrane photobioreactors (SPM-PBRs) in different seasons. The microalgae in the SPM-PBRs were able to grow on nutrients diffused into the PBRs from the surrounding seawater through SPMs. The biomass productivity varied depending on the ion permeabilities of the SPMs and environmental conditions, whereas the quality and quantity of fatty acids were constant. The temperature of seawater had a greater influence than solar radiation did on productivity of Tetraselmis sp. in SPM-PBRs. SPM-PBRs could provide technologies for concurrent algal biomass and fatty acids production, and eutrophication reduction in the ocean.

Keywords

References

  1. Amaro HM, Macedo ÂC, Malcata FX. 2012. Microalgae: an alternative as sustainable source of biofuels? Energy 44: 158-166. https://doi.org/10.1016/j.energy.2012.05.006
  2. Bhattacharjee M, Siemann E. 2015. Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors. Algae 30: 67-79. https://doi.org/10.4490/algae.2015.30.1.067
  3. Buckwalter P, Embaye T, Gormly S, Trent JD. 2013. Dewatering microalgae by forward osmosis. Desalination 312: 19-22. https://doi.org/10.1016/j.desal.2012.12.015
  4. Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process 48: 1146-1151. https://doi.org/10.1016/j.cep.2009.03.006
  5. Crowe B, Attalah S, Agrawal S, Waller P, Ryan R, Van Wagenen J, et al. 2012. A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management. Int. J. Chem. Eng. 2012: 9. https://doi.org/10.1155/2012/920608
  6. Durmaz Y, Donato M, Monteiro M, Gouveia L, Nunes M, Pereira TG, et al. 2009. Effect of temperature on α-tocopherol, fatty acid profile, and pigments of Diacronema vlkianum (Haptophyceae). Aquac. Int. 17: 391-399. https://doi.org/10.1007/s10499-008-9211-9
  7. Feng P, Deng Z, Hu Z, Fan L. 2011. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour. Technol. 102: 10577-10584. https://doi.org/10.1016/j.biortech.2011.08.109
  8. Grima EM, Fernández FGA, Camacho FG, Chisti Y. 1999. Photobioreactors: light regime, mass transfer, and scaleup. J. Biotechnol. 70: 231-247. https://doi.org/10.1016/S0168-1656(99)00078-4
  9. Iancu P, Pleşu V, Velea S. 2012. Flue gas CO2 capture by microalgae in photobioreactor: a sustainable technology. Chem. Eng. Trans. 29: 799-804.
  10. Jiang Y, Chen F. 2000. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalgae Crypthecodinium cohnii. J. Am. Oil Chem. Soc. 77: 613-617. https://doi.org/10.1007/s11746-000-0099-0
  11. Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML. 2010. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 101: 1406-1413. https://doi.org/10.1016/j.biortech.2009.09.038
  12. Kang Z, Kim BH, Ramanan R, Choi JE, Yang JW, Oh HM, et al. 2015. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J. Microbiol. Biotechnol. 25: 109-118. https://doi.org/10.4014/jmb.1409.09019
  13. Kim BH, Kang Z, Ramanan R, Choi JE, Cho DH, Oh HM, et al. 2014. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. J. Microbiol. Biotechnol. 24: 1123-1132. https://doi.org/10.4014/jmb.1312.12057
  14. Kim ZH, Lee HS, Lee CG. 2009. Red and blue photons can enhance the production of astaxanthin from Haematococcus pluvialis. Algae 24: 121-127. https://doi.org/10.4490/ALGAE.2009.24.2.121
  15. Kim ZH, Park H, Ryu YJ, Shin DW, Hong SJ, Tran HL, et al. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27: 1763-1773. https://doi.org/10.1007/s10811-015-0556-y
  16. Lee SH, Ahn CY, Jo BH, Lee SA, Park JY, An KG, et al. 2013. Increased microalgae growth and nutrient removal using balanced N:P ratio in wastewater. J. Microbiol. Biotechnol. 23: 92-98. https://doi.org/10.4014/jmb.1210.10033
  17. Lee SH, Oh HM, Jo BH, Lee SA, Shin SY, Kim HS, et al. 2014. Higher biomass productivity of microalgae in an attached growth system, using wast water. J. Microbiol. Biotechnol. 24: 1566-1573. https://doi.org/10.4014/jmb.1406.06057
  18. Lee YK, Hing HK. 1989. Supplying CO2 to photosynthetic algal cultures by diffusion through gas-permeable membranes. Appl. Microbiol. Biotechnol. 31: 298-301. https://doi.org/10.1007/BF00258413
  19. Lin Q, Lin J. 2011. Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresour. Technol. 102: 1615-1621. https://doi.org/10.1016/j.biortech.2010.09.008
  20. Ras M, Steyer JP, Bernard O. 2013. Temperature effect on microalgae: a crucial factor for outdoor production. Rev. Environ. Sci. Biotechnol. 12: 153-163. https://doi.org/10.1007/s11157-013-9310-6
  21. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112. https://doi.org/10.1002/bit.22033
  22. Teoh ML, Chu WL, Marchant H, Phang SM. 2004. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol. 16: 421-430. https://doi.org/10.1007/s10811-004-5502-3
  23. Tran HL, Kwon JS, Kim ZH, Oh Y, Lee CG. 2010. Statistical optimization of culture media for growth and lipid production of Botryococcus braunii LB572. Biotechnol. Bioprocess Eng. 15: 277-284. https://doi.org/10.1007/s12257-009-0127-7
  24. Trent J, Wiley P, Tozzi S, McKuin B, Reinsch S. 2012. Research spotlight: The future of biofuels: is it in the bag? Biofuels 3: 521-524. https://doi.org/10.4155/bfs.12.53
  25. Wagenen JV, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M. 2012. Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5: 731-740. https://doi.org/10.3390/en5030731
  26. Wang J, Sommerfeld MR, Lu C, Hu Q. 2013. Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. Algae 28: 193-202. https://doi.org/10.4490/algae.2013.28.2.193
  27. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y. 2011. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour. Technol. 102: 159-165. https://doi.org/10.1016/j.biortech.2010.07.017
  28. Zeebe RE, Wolf-Gladrow D. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes, pp. 4-11. Elsevier, Amsterdam, The Netherlands.
  29. Zheng Y, Yuan C, Liu J, Hu G, Li F. 2014. Lipid production by a CO2-tolerant green microalga, Chlorella sp. MRA-1. J. Microbiol. Biotechnol. 24: 683-689. https://doi.org/10.4014/jmb.1308.08050
  30. Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM. 2014. Microalgal biofuels: flexible bioenergies for sustainable development. Renew. Sust. Energ. Rev. 30: 1035-1046. https://doi.org/10.1016/j.rser.2013.11.003

Cited by

  1. Enhancing biomass and fatty acid productivity of Tetraselmis sp. in bubble column photobioreactors by modifying light quality using light filters vol.22, pp.4, 2016, https://doi.org/10.1007/s12257-017-0200-6
  2. 부유형 해양 광생물반응기의 선택적 투과막의 술폰화 반응을 통한 Biofouling 억제 및 미세조류 생산성 향상 vol.9, pp.1, 2016, https://doi.org/10.15433/ksmb.2017.9.1.014
  3. Enhanced Production of Fatty Acids via Redirection of Carbon Flux in Marine Microalga Tetraselmis sp. vol.28, pp.2, 2016, https://doi.org/10.4014/jmb.1702.02064
  4. Development of Carbon-Based Solid Acid Catalysts Using a Lipid-Extracted Alga, Dunaliella tertiolecta, for Esterification vol.28, pp.5, 2016, https://doi.org/10.4014/jmb.1712.12004
  5. Improvement of biomass and fatty acid productivity in ocean cultivation of Tetraselmis sp. using hypersaline medium vol.30, pp.5, 2016, https://doi.org/10.1007/s10811-018-1388-3
  6. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products vol.17, pp.None, 2018, https://doi.org/10.1186/s12934-018-0879-x
  7. Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum-sensing precursors and strategic improvement in lipid productivit vol.11, pp.None, 2018, https://doi.org/10.1186/s13068-018-1097-9
  8. 미세조류 배양을 이용한 부영양호 내 수질 개선 기술 개발 vol.10, pp.2, 2018, https://doi.org/10.15433/ksmb.2018.10.2.091
  9. Biotechnological Potential of Korean Marine Microalgal Strains and Its Future Prospectives vol.41, pp.4, 2016, https://doi.org/10.4217/opr.2019.41.4.289
  10. Enhancing Microalgal Biomass Productivity in Floating Photobioreactors with Semi-Permeable Membranes Grafted with 4-Hydroxyphenethyl Bromide vol.28, pp.2, 2016, https://doi.org/10.1007/s13233-020-8023-2
  11. Development of porous fabric‐hydrogel composite membranes with enhanced ion permeability for microalgal cultivation in the ocean vol.137, pp.5, 2016, https://doi.org/10.1002/app.48324
  12. 초기 육계 사료내 토착미세조류(Parachlorella sp.) 첨가에 따른 성장 및 면역반응 변화 vol.47, pp.1, 2020, https://doi.org/10.5536/kjps.2020.47.1.49
  13. The Influence of Dissolved Organic Carbon on the Microbial Community Associated with Tetraselmis striata for Bio-Diesel Production vol.10, pp.10, 2016, https://doi.org/10.3390/app10103601
  14. 식품에 이용되는 미세조류와 이를 이용한 식품 연구개발 동향 및 전망 vol.36, pp.1, 2016, https://doi.org/10.7318/kjfc/2021.36.1.66
  15. Year-Round Cultivation of Tetraselmis sp. for Essential Lipid Production in a Semi-Open Raceway System vol.19, pp.6, 2021, https://doi.org/10.3390/md19060314