DOI QR코드

DOI QR Code

An Observation-based Movement Control for Educational Coding Robots

코딩 학습용 로봇 제어를 위한 관찰 기반 움직임 제어

  • 박경복 (홍익대학교 일반대학원 게임학부) ;
  • 조성현 (홍익대학교 일반대학원 게임학부) ;
  • 서범주 (홍익대학교 일반대학원 게임학부)
  • Received : 2016.11.16
  • Accepted : 2016.12.15
  • Published : 2016.12.20

Abstract

Recently, a variety of methodologies based on the use of educational coding robots have been proposed and experimented in newly emerging korean educational coding markets. Due to imprecise movement accuracy of the existing coding robots, however, such robots are mainly used as a toy. Inspired by these observations, we developed a simple adjustment method during robot movements, which is based on the observation results of 6 line-tracking sensors: 3 sensors in the center of a robot and other 3 sensors at the front. These sensors help to determine whether the robot is in the right location and whether it rotates as expected. Through the well-designed experiments, we report the effectiveness of our proposed solution: the average distance error of 1.57cm and the average degree error of 2.38 degree before and after complex movements. In near future, we hope our method to be popularly used in various educational coding robot platforms.

소프트웨어 교육이 초중등 정규 교과목으로 편재됨에 따라 코딩 교육용 로봇을 활용한 코딩 교구 시장이 나타나고 있다. 하지만 현재 로봇용 코딩 교구 시장은 로봇의 부정확한 움직임 제어 때문에 코딩교육의 본질을 벗어나 장난감으로서의 기능에만 충실한 경우가 많다. 이 점에 착안하여 본 연구에서는 6개의 라인센서의 관찰 정보를 바탕으로 로봇의 전진 이동, 회전 이동을 보정하는 방안을 제시한다. 본 방안의 효용성을 검증하기 위해 보드 게임과 유사한 코딩 학습용 테스트베드를 구축하고 코딩을 통해 로봇을 제어할 수 있는 모바일 앱을 활용하여 로봇의 실제 움직임 정확도를 측정하였다. 측정결과에 따르면 다양한 명령어를 수행한 결과 거리측면에서는 최대 1.57cm, 각도측면에서는 2.38도의 오차를 보고하고 있다. 이 결과를 바탕으로 본 논문에서 제안한 방식을 활용하면 향후 코딩교구 시장에서의 로봇의 활용도가 더욱 커질 것으로 기대된다.

Keywords

References

  1. Korean Ministry of Education, Software Education Guidance, 2015.
  2. SungSu Jin. PhanWoo Park, The Effects of Programming Learning on the Improvement of Problem Solving Ability Using MCU, Journal of The Korea Association of Information Education, Vol 14, No. 3, pp. 319-328, 2010.
  3. Pamela B Lawhead et al, A Road Map for Teaching Introductory Programming Using LEGO Mindstorms Robots, ACM SIGCSE Bulletin, Vol. 35, No. 2, pp. 191-201, 2002. https://doi.org/10.1145/782941.783002
  4. Jeong-Hyun Seo, Young-Sik Kim, Study on educational utilization of physical computing using Arduino, In Proceedings of the Korean Association of Computer Education, Vol. 16, No. 2, pp. 103-107, 2012.
  5. Seok-Jeon Kim, Young-Ju Jeon, Tae-Young Kim, A Practical Approach to Arduino Programming for The Physical Computing Section of The Informatics Curriculum in Korean Middle School, In Proceedings of the Korean Association of Computer Education, Vol. 20, No. 2, pp. 29-34, 2016.
  6. A Harvard Business Review Analytic Services Report, Internet of Things: Science Fiction or Business Fact? Harvard Business Review, 2014.
  7. Ki-hyuk Kim, Gwi-Im Ahn, Hwan-Seob Lim, Deok-Gil Jung, Research about senior citizen IT start-up education linking the IoT, Journal of Korea Institute of Information and Communication Engineering, Vol. 19, No. 11, pp. 2710-2716, 2015. https://doi.org/10.6109/jkiice.2015.19.11.2710
  8. https://www.bee-bot.us/
  9. http://albert.school/
  10. http://hellogeeks.kr/bitbrick/
  11. https://lightbot.com/hocflash.html
  12. https://unity3d.com/
  13. https://www.arduino.cc/en/Main/ArduinoBoardUno
  14. Katharina Hausmair, Shuli Chi, Peter Singerl, Christian Vogel, Aliasing-Free Digital Pulse-Width Modulation for Burst-Mode RF Transmitters. IEEE Transactions on Circuits and Systems, Vol. 60, No. 2, pp. 415-427, 2013. https://doi.org/10.1109/TCSI.2012.2215776
  15. Al Williams, Microcontroller Projects Using the Basic Stamp (2nd Ed.), CRC Press, ISBN 978-1578201013, 2002.
  16. G. K. McMillan, D. M. Considine (ed), Process Instruments and Controls Handbook Fifth Edition, McGraw Hill, pp. 5-26, ISBN 978-0070125827, 1999.
  17. https://www.dfrobot.com/wiki/index.php/Line_Tracking_Sensor_for_Arduino_(SKU:SEN0017)