DOI QR코드

DOI QR Code

The Mineralogical and Chemical Characteristics of Fe Impurities and the Efficiency of their Removal Using Microwave Heating and Magnetic Separation in the Pyrophyllite Ore

엽납석광석에 존재하는 Fe 불순물의 광물학적/화학적 특성과 마이크로웨이브 가열 및 자력분리에 의한 제거효과

  • Cho, Kang-Hee (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Kim, Bong-Ju (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Choi, Nag-Choul (Dept. of Rural Systems Engineering/Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Park, Cheon-Young (Dept. of Energy and Resource Engineering, Chosun University)
  • 조강희 (조선대학교 에너지.자원공학과) ;
  • 김봉주 (조선대학교 에너지.자원공학과) ;
  • 최낙철 (서울대학교 지역시스템공학과) ;
  • 박천영 (조선대학교 에너지.자원공학과)
  • Received : 2015.08.04
  • Accepted : 2016.06.10
  • Published : 2016.06.30

Abstract

The Fe-component of pyrophyllite is an impurity that reduces its grade in the final product. In order to identify the amount of impurity in pyrophyllite and to remove the Fe from the ore using a dry method, microwave heating and magnetic separation were carried out. Pyrite and hematite were identified to contain pyrophyllite by microscopy, XRD, XRF, SEM/EDS and EPMA analysis. It is suggested that the euhedral pyrite in the pyrophyllite is formed by hydrothermal solution, and then the dissolution cavity structure is formed with a partial remainder of the pyrite which dissolved in acidic water. And the $Fe^{3+}$ ion contained in the acidic water precipitated out in the concentric structure of hematite as the origin of sedimentary structure. As a result of the microwave heating and magnetic separation experiments, the Fe removal rates obtained were 96% and 93% from pyrophyllite ore from the Sunsan mine and Wando mine, respectively. It is confirmed that the microwave heating and magnetic separation method was an environmentally friendly method to upgrade the low-grade pyrophyllite.

엽납석광석에 Fe-성분이 불순물로 작용하여 엽납석의 최종 산업제품의 품위를 저하시키고 있다. 엽납석광석에 존재하는 불순물을 광물-화학적으로 확인하고 마이크로웨이브와 자력선별을 이용하여 Fe 함량을 건식방법으로 감소시키고자 하였다. 광학현미경, XRD, XRF, SEM/EDS 및 EPMA 분석을 통하여 엽납석에 황철석과 적철석이 포함되어 있는 것을 확인하였다. 엽납석에 포함된 자형의 황철석은 열수용액에 의하여 형성되고, 용해 공동 구조는 황철석이 산성수에 의하여 부분적으로 용해되어 형성되는 것으로 사료된다. 그리고 퇴적 기원 구조를 보이는 동심원 구조의 적철석은 산성수에 포함되어 있는 $Fe^{3+}$가 침전되어 형성된 것으로 사료된다. 마이크로웨이브 가열과 자력선별 실험을 수행한 결과 Fe 제거율은 성산광산이 96%, 완도광산이 93%로 나타났다. 마이크로웨이브 가열과 자력선별은 저 품위 엽납석을 품위 향상시킬 수 있는 친환경적 방법이라 사료된다.

Keywords

References

  1. Abdrakhimova, E.S. (2009) Effect of pyrophyllite on the physicomechanical properties and acid resistence of acid-proof material. Refractories and Industrial Ceramics, 50, 174-177. https://doi.org/10.1007/s11148-009-9177-9
  2. Abdrakhimova, E.S. (2010) Physicochemical studies of pyrophyllite of the Nickel deposit. Refractories and Industrial Ceramics, 51, 6-8. https://doi.org/10.1007/s11148-010-9244-2
  3. Ambikadevi, V.R. and Lalithambika, M. (2000) Effect of organic acids on ferric iron removal from iron-stained kaolinite. Applied Clay Science, 16, 133-145. https://doi.org/10.1016/S0169-1317(99)00038-1
  4. Bakunov, V.S., Murzakova, A.R., Shayakhmetov, R.U., and Yakupova, L.V. (2012) Pyrophyllitic raw materials from the Kul'-Yurt-Tau deposit as a base for ceramic composites. Glass and ceramics, 68, 405-409. https://doi.org/10.1007/s10717-012-9400-x
  5. Barani, K., Javad Koleini, S.M., and Rezaei, B. (2011) Magnetic properties of an iron ore sample after microwave heating. Separation and Purification Technology, 76, 331-336. https://doi.org/10.1016/j.seppur.2010.11.001
  6. Bluhm, D.D., Fanslow, E., and Nelson, S.O. (1986) Enhanced magnetic separation of pyrite from coal after microwave heating. IEEE Transactions on Magnetics, 22, 1887-1890. https://doi.org/10.1109/TMAG.1986.1064686
  7. Bozkaya, O., Yalcin, H., Basibuyuk, Z., and Bozkaya, G. (2007) Metamorphic-hosted pyrophyllite and dickite occurrence from the hydrous Al-silicate deposits of the Malatya-Puturge region, central eastern Anatolia, Turkey. Clays and Clay Minerals, 55, 423-442. https://doi.org/10.1346/CCMN.2007.0550409
  8. Bozkaya, O., Yalcin, H., Basibuyuk, Z., and Bozkaya, G. (2007) Metamorphic-hosted pyrophyllite and dickite occurrence from the hydrous Al-silicate deposits of the Malatya-Puturge region, central eastern Anatolia, Turkey. Clays and Clay Minerals, 55, 423-442. https://doi.org/10.1346/CCMN.2007.0550409
  9. Browen, B.B., Benison, K.C., Oboh-Ikuenobe, F.E., Story, S., and Craig, J.R. and Vaughan, D.J. (1981) Ore microscopy and ore petrography. John Wiley & Sons, 406p.
  10. Evans, A. M. (1993) ore geology and industrial minerals; an introduction. Blackwell Scientific Publications, 390p.
  11. Harben, P.W. (2008) World distribution of industrial minerals deposits Industrial Minerals and Rocks. Commodities, Markets, and Uses, 13-48.
  12. Harvey, C.C. and Murray, H.H. (1997) Industrial clays in the 21st century: a perspective of exploration, technology and utilization. Allpied clay Science, 11, 285-310. https://doi.org/10.1016/S0169-1317(96)00028-2
  13. Higashi, S. (2000) Ammonium-bearing mica and mica/ smectite of several pottery stone and pyrophyllite deposits in Japan: their mineralogical properties and utilization. Applied Clay Science, 16, 171-184. https://doi.org/10.1016/S0169-1317(99)00052-6
  14. Kingman, S.W. (2006) Recent developments in microwave processing of minerals. International Materials Reviews, 51, 1-12. https://doi.org/10.1179/174328006X79472
  15. Koh, S.M., Takagi, T., Kim, M.Y., Naito, K., Hong, S.S., and Sudo, S. (2000) Geological and geochemical characteristics of the hydrothermal clay alteration in South korea. Resource Geology, 50, 229-242. https://doi.org/10.1111/j.1751-3928.2000.tb00072.x
  16. Kontak, D.J., Finck, P.W., and Dw wolfe, J. (2004) Pyrophyllite occurrences in the Coxheath area, Cape breton Island, Nova Scotia natural resources. Open File Report ME 20043-1, 18p.
  17. Madden, A.S., Hamilton, V.E., Elwood Madden, M.E., Larson, P.R., and Miller, M.A. (2010) Low-temperature mechanism for formation of coarse crystalline hematite through nanoparticle aggregation. Earth and Planetary Science letters, 298, 377-384. https://doi.org/10.1016/j.epsl.2010.08.014
  18. Morris, R.V., Ming, D.W., Graff, T.G., Arvidson, R.E., Bell III, J.F., Squyres, S.W., Mertzman, S.A., Gruener, J.E., Golden, D.C. Le, L., and Robinson, G.A. (2005) Hematite spherules in basaltic tephra altered under aqueous, aic-sulfate conditions on Mauna kea volcano, Hawaii,: possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 168-178. https://doi.org/10.1016/j.epsl.2005.09.044
  19. Mowla, D., Karimi, G., and Ostadnezhad, K. (2008) Removal of hematite from silica sand ore by reverse flotation technique. Separation and Purification Technology, 58, 419-423. https://doi.org/10.1016/j.seppur.2007.08.023
  20. Mukhopadhyay, T.K., Ghatak, S., and Maiti, H.S. (2010) Pyrophyllite as raw material for ceramic application in the perspective of its pyro-chemical properties. Ceramics International, 36, 909-916. https://doi.org/10.1016/j.ceramint.2009.10.026
  21. Ohkawa, M., Yamashita, Y., Inoue, M., Kitagawa, R., and Takeno, S. (2000) Hematite in pyrophyllite ore deposits, Shobara district, southwestern Japan, Mineralogy and Petrology, 70, 15-23. https://doi.org/10.1007/s007100070010
  22. Omran, M., Fabritius T., Elmahdy, A., Abdel-Khalek, N.A., El-Aref, M., and El-Hamis, Elmanawi. (2014) Effect of microwave pre-treatment on the magnetic properties of iron ore and its implications on magnetic separation. Separation and Purification Technology, 136, 223-232. https://doi.org/10.1016/j.seppur.2014.09.011
  23. Perepelitsyn, V.A., Proshkin, V.A., Rytvin, V.M., Ignatenko, V.G., Yarosh, I.A., and Abyzov, A.N. (2008) Non-traditional domestic refractory materials for aluminum metallurgy. Refractory and Industrial Ceramics, 49, 257-260. https://doi.org/10.1007/s11148-008-9090-7
  24. Perez-Maqueda, L.A., Montes, O.M., Gonzalez-Macias, E.M., Franco, F., Poyato, J., and Perez-Rodriguez, J.L. (2004) Thermal transformations of sonicated pyrophyllite. Applied Clay Science, 24, 201-207. https://doi.org/10.1016/j.clay.2003.03.003
  25. Phillips, G.N. and Powell, R. (2015) Hydrothermal alteration in the Witwatersrand goldfields. Ore Geology Reviews, 65, 245-273. https://doi.org/10.1016/j.oregeorev.2014.09.031
  26. Phillips, W. R. and Griffen, D.T. (1981) Optical mineralogy; the nonopaque minerals. W.H. Freeman and Company, 677p.
  27. Picot, P. and Johan, Z. (1982) Atlas of ore minerals, Elsevier, 458p.
  28. Pracejus, B. (2008) The ore minerals under the microscope; an optical guide. Elsevier, 875p.
  29. Ramdohr, P. (1980) The ore minerals and their intergrowths. pergamon Press, 1205p.
  30. Rodriguez, J.L. (1985) Pyrophyllite determination in mineral mixtures. Clays and Clay Minerals, 33, 563-566. https://doi.org/10.1346/CCMN.1985.0330614
  31. Sanchez-Soto, P.J., Justo, A., and Perez-Rodriguez, J.L. (1994) Structural alteration of pyrophyllite by dry grinding as studied by IR spectroscopy. Journal of materials Science Letters, 13, 915-918. https://doi.org/10.1007/BF00273248
  32. Shin, H.J., and Lee, C.J. (2012) Atlas of rock-forming minerals in thin section, Kyoyookbook, Seoul, 379p.
  33. Sinyakovskaya, I., Zaykov, V. and Kitagawa, R. (2005) Types of pyrophyllite deposits in Foldbelts. Resource Geology, 55, 405-418. https://doi.org/10.1111/j.1751-3928.2005.tb00261.x
  34. Tsuzuki, Y. (1976) Solubility diagram for explaing zone sequence in bauxite, kaolin and pyrophyllite- diaspore deposits. Clays and Clay Minerals, 24, 297-302. https://doi.org/10.1346/CCMN.1976.0240605
  35. Uslu, T., Atalay, U., and Atol, A.I. (2003) Effect of microwave heating on magnetic separation of pyrite. Colloids and Surface, 225, 161-167. https://doi.org/10.1016/S0927-7757(03)00362-5
  36. Veglio, F., Passariello, B., Barbaro, M., Plescia, P., and Marabini, A.M. (1998) Drum leaching tests in iron removal from quartz using oxalic and sulphuric acids. International Journal of Mineral Processing, 54, 183-200. https://doi.org/10.1016/S0301-7516(98)00014-3
  37. Velasco, F., Herrero, J.M., Suarez, S., Yusta, I., Alvaro, A., and Tornos, F. (2013) Supergene features and evolution of gossan capping massive sulphide deposits in the Iberian pyrite belt. Ore Geology Reviews, 53, 181-203. https://doi.org/10.1016/j.oregeorev.2013.01.008
  38. Waters, K.E., Rowson, N.A., Greenwood, R.W., and Williams, A.J. (2008) The effect of heat treatment on the magnetic properties of pyrite. Minerals Engineering, 21, 679-683. https://doi.org/10.1016/j.mineng.2008.01.008
  39. Wiewiora, A., Sanchez-Soto, P.J., Aviles, M.A., Justo, A., and Perez-Rodriguez, J.L. (1993) Effect of dry grinding and leaching on polytypic structure of pyrophyllite. Applied Clay Science, 8, 261-282. https://doi.org/10.1016/0169-1317(93)90008-O

Cited by

  1. The Characterization of Pyrophyllite Based Ceramic Reactive Media for Permeable Reactive Barriers vol.31, pp.4, 2018, https://doi.org/10.9727/jmsk.2018.31.4.227
  2. 모암의 종류에 따른 황토 내 점토광물의 분포: 경남 하동군 북천면의 예 vol.38, pp.7, 2017, https://doi.org/10.5467/jkess.2017.38.7.598
  3. Pyrophyllite: An Economic Mineral for Different Industrial Applications vol.11, pp.23, 2016, https://doi.org/10.3390/app112311357