DOI QR코드

DOI QR Code

Stress status classification based on EEG signals

뇌파 신호 기반 스트레스 상태 분류

  • Received : 2016.04.05
  • Accepted : 2016.06.10
  • Published : 2016.06.30

Abstract

In daily life, humans get stress very often. Stress is one of the important factors of healthy life and closely related to the quality of life. Too much stress is known to cause hormone imbalance of our body, and it is observed by the brain and bio signals. Based on this, the relationship between brain signal and stress is explored, and brain signal based stress index is proposed in our work. In this study, an EEG measurement device with 32 channels is adopted. However, only two channels (FP1, FP2) are used to this study considering the applicability of the proposed method in real enveironment, and to compare it with the commercial 2 channel EEG device. Frequency domain features are power of each frequency bands, subtraction, addition, or division by each frequency bands. Features in time domain are hurst exponent, correlation dimension, lyapunov exponent, etc. Total 6 subjects are participated in this experiment with English sentence reading task given. Among several candidate features, ${\frac{{\theta}\;power}{mid\;{\beta}\;power}}$ shows the best test performance (70.8%). For future work, we will confirm the results is consistent in low price EEG device.

일상생활에서 인간은 끊임없이 스트레스를 받으며 살아간다. 스트레스는 삶의 질과 밀접하게 연관이 있으며, 건강한 삶은 스트레스에 적절하게 대처하며 살아가는 삶이다. 스트레스는 호르몬 분비에 영향을 주며, 호르몬 분비의 변화는 뇌 신호 및 생체 신호에 영향을 준다. 이를 바탕으로, 본 논문은 스트레스와 뇌파 신호와의 관련성을 확인하였으며, 더 나아가 뇌파 신호 기반 정량적 스트레스 지수를 찾아보았다. 사용한 뇌파 장비는 32채널 유선 EEG 장비이며, 상업용 2채널(FP1, FP2) 뇌파 장비와의 비교를 위해, 상업용 뇌파 장비와 동일한 위치에 있는 2채널만 이용하여 데이터를 분석하였다. 뇌파의 주파수 특징점으로는 각 주파수 대역대의 파워 값, 주파수 대역대 파워 값들 간의 비율 및 차이 등을 테스트해 보았으며, 시간 특징점으로는 허스트 지수, 상관 지수, 리아프노프 지수 등을 테스트해 보았다. 총 6명의 피 실험자가 본 실험에 참여하였으며, 실험 과제로는 영어 지문이 사용되었다. 여러 특징점들 중 ${\theta}$ 파워/mid ${\beta}$ 파워가 가장 좋은 테스트 성능을 보여줬으며, 테스트 데이터에 대하여 평균 70.8%의 스트레스 분류 정확도를 얻었다. 추후, 저가 상용 2채널 뇌파 장치를 이용해서 비슷한 결과가 나오는지 확인해 볼 예정이다.

Keywords

References

  1. M. Feuerstein, E. Labbe, and A.R. Kuczmierczyk, "Health psychology: A psychobiological perspective," , Springer Science & Business Media, 2013.
  2. A. Subhani, Likun Xia, and A. Malik, "EEG signals to measure mental stress", 2nd International Conference on Behavioral, Cognitive and Psychological Sciences-BCPS, pp 10, 2011.
  3. N. Sharma, and T. Gedeon, "Objective measures, sensors and computational techniques for stress recognition: A survey", Computer methods and programs in biomedicine, Vol. 108, No. 3, pp 1287-1301, 2012. https://doi.org/10.1016/j.cmpb.2012.07.003
  4. M. Le Fevre, J. Matheny, and G.S. Kolt, "Eustress, distress, and interpretation in occupational stress", Journal of managerial psychology, Vol. 18, No. 7, pp 726-744, 2003. https://doi.org/10.1108/02683940310502412
  5. H.M. Burke, M.C. Davis, C. Otte, and D.C. Mohr, "Depression and cortisol responses to psychological stress: a meta-analysis", Psychoneuroendocrinology, Vol. 30, No. 9, pp 846-856, 2005. https://doi.org/10.1016/j.psyneuen.2005.02.010
  6. M.H. Ahn, "Analysis on The Reflection Degree of Worker's Stress by Brain-waves based Anti-Stress Quotient", Journal of the Korea Academia-Industrial cooperation Society, Vol. 11, No. 10, pp 3833-3838, 2010. https://doi.org/10.5762/KAIS.2010.11.10.3833
  7. J.F. Thayer, F. Ahs, M. Fredrikson, J.J. Sollers, and T.D. Wager, "A meta-analysis of heart rate variability and neuroimaging studies", Neuroscience & Biobehavioral Reviews, Vol. 36, No. 2, pp 747-756, 2012. https://doi.org/10.1016/j.neubiorev.2011.11.009
  8. A. Steptoe, and M. Marmot, "Impaired cardiovascular recovery following stress predicts 3-year increases in blood pressure", Journal of hypertension, Vol. 23, No. 3, pp 529-536, 2005. https://doi.org/10.1097/01.hjh.0000160208.66405.a8
  9. M. Pedrotti, M.A. Mirzaei, A. Tedesco, J.R. Chardonnet, F. Merienne, S. Benedetto, and T. Baccino, "Automatic stress classification with pupil diameter analysis", International Journal of Human-Computer Interaction, Vol. 30, No. 3, pp 220-236, 2014. https://doi.org/10.1080/10447318.2013.848320
  10. H.E. Hurst, "Long-term storage capacity of reservoirs", Trans. Amer. Soc. Civil Eng., Vol. 116, No. 1, pp 770-808, 1951.
  11. M.T. Rosenstein, J.J. Collins, and C.J. De Luca, "A practical method for calculating largest Lyapunov exponents from small data sets", Physica D: Nonlinear Phenomena, Vol. 65, No. 1, pp 117-134, 1993. https://doi.org/10.1016/0167-2789(93)90009-P
  12. E. Pereda, A. Gamundi, R. Rial, and J. Gonzalez, "Non-linear behaviour of human EEG: fractal exponent versus correlation dimension in awake and sleep stages", Neuroscience letters, Vol. 250, No. 2, pp 91-94, 1998. https://doi.org/10.1016/S0304-3940(98)00435-2
  13. S.M. Pincus, "Approximae entropy as a measure of system complexity", Proceedings of the National Academy of Sciences, Vol. 88, No. 6, pp 2297-2301, 1991. https://doi.org/10.1073/pnas.88.6.2297
  14. T.S. Furey, N. Cristianinim N. Duffy, D.W. Bednarski, M. Schummer, and D. Haussler, "Support vector machine classification and validation of cancer tissue samples using microarray expression data", Bioinformatics, Vol. 16, No. 10, pp 906-914, 2000. https://doi.org/10.1093/bioinformatics/16.10.906
  15. G.S. Choi, J.J. Park, and H.N. Nguyen, "Feature selection algorithm using random forest to diagnose cancer", The Journal of The Institute of Internet, Broadcasting and Communication(JIIBC), Vol. 1, No. 1, pp 10-15, 2009.

Cited by

  1. The Intelligent Healthcare Data Management System Using Nanosensors vol.2017, 2017, https://doi.org/10.1155/2017/7483075