DOI QR코드

DOI QR Code

Method of Correcting Hyperspectral Image for Seabed Material Analysis of Coastal Area

연안 해저 재질 분석을 위한 초분광영상의 보정 방법

  • Received : 2016.04.03
  • Accepted : 2016.05.16
  • Published : 2016.06.30

Abstract

Airborne or spaceborne remote sensing can increase the efficiency of seabed material surveys compared with field surveying using a vessel. For the same seabed material, the optical remote sensing image shows variation in the reflectance depending on the water depth, which is due to the absorption and scattering by the water column. This study suggests a correction procedure to use the hyperspectral image for seabed material analysis. The study is conducted in the coastal area from Sacheonjin Port to Gyungpo Beach in Gangwon-do. The hyperspectral image is acquired using the CASI-1500 sensor. The diffuse attenuation coefficient is estimated for each band through regression models between the water reflectance and depth. Then, the coefficient is applied to each band of the image. As a result, the completely corrected image can be interpreted for a deeper area, although the interpretable area is very shallow without water column correction. Additionally, the water column corrected image shows decreased variation of reflectance with various water depths.

연안 해저 재질 조사에 있어 위성 및 항공 원격탐사 자료를 이용하면 기존 현장조사 방법에 비해 효율성을 높일 수 있으나, 물에 의한 빛의 흡수 특성으로 인해 동일한 조건이더라도 수심에 따라 영상에서 다른 반사도를 보이게 된다. 따라서 본 연구에서는 초분광영상을 연안 해저 재질 분석 자료로 사용하기 위한 보정 방법을 제시하고자 한다. 연구지역은 강원도 사천진항에서 경포해수욕장 일대이고, 사용한 초분광영상은 CASI-1500 영상이다. 수체 반사율과 수심 간의 회귀모델을 통해 밴드별 산란흡수계수를 추정하여 영상에 적용하였다. 그 결과 수심보정 전 영상에서 매우 얕은 수심에 한정하여 판독이 가능하였지만 수심보정 후 상대적으로 깊은 수심까지 판독이 가능해지고, 수심에 따른 해저면의 반사율 변이가 크게 감소한 것을 알 수 있었다.

Keywords

References

  1. Cho, H.G., D.W. Kim and J.I. Shin. 2014. Study of comparison of classification accuracy of airborne hyperspectral image land cover classification though resolution change. Journal of the Korean Society for Geospatial Information System 22(3):155-160 (조형갑, 김동욱, 신정일. 2014. 해상도변화에 따른 항공초분광영상 토지피복분류의 분류정확도 비교 연구. 한국지형공간정보학회지 22(3):155-160). https://doi.org/10.7319/kogsis.2014.22.3.155
  2. Choi, B.G., Y.W. Na, S.H. Kim and J.I. Lee. 2014. A study on the improvement classification accuracy of land cover using the aerial hyperspectral image with PCA. Journal of the Korean Society for Geospatial Information System 22(1):81-88 (최병길, 나영우, 김승현, 이정일. 2014. 항공 하이퍼스펙트럴 영상의 PCA기법 적용을 통한 토지 피복 분류 정확도 개선 방안에 관한 연구. 한국지형공간정보학회지 22(1):81-88).
  3. Choi, H.J. 2014. A study on seacoast land cover classification from hyperspectral images, Master's Thesis, Kyonggi Univ., Suwon, Korea. (최해종. 2014. 초분광영상의 해안선 토지피복분류에 관한 연구. 경기대학교 대학원 석사학위논문).
  4. Ciraolo, G., E. Cox, G. La Loggia, A. Maltese. 2006. The classification of submerged vegetation using hyperspectral MIVIS data. Annals of Geophysics 49(1):287-294.
  5. Goetz, A.F.H. 2009. Three decades of hyperspectral remote sensing of the earth : a personal view. Remote Sensing of Environment 113(1):S5-S16. https://doi.org/10.1016/j.rse.2007.12.014
  6. Gordon, H.R., D.K. Clark, J.W. Brown, O.B. Brown, R.H. Evans and W.W. Broenkow. 1983. Phytoplankton pigment concentrations in the middle atlantic bight: comparison of ship determinations and CZCS estimates. Applied Optics 22(1):20-36. https://doi.org/10.1364/AO.22.000020
  7. Karaska, M.A., R.L. Huguenin, J.L. Beacham, M.H. Wang, J.R. Jensen and R.S. Kaufmann. 2004. AVIRIS measurements of chlorophyll, suspended minerals, dissolved organic carbon, and turbidity in the Neuse River, North Carolina. Photogrammetric Engineering & Remote Sensing 70(1):125-133. https://doi.org/10.14358/PERS.70.1.125
  8. Kim, H. 2014. Extraction of geospatial information of coastal area using airborne hyperspectral imagery and LiDAR DEM, Ph.D. Thesis, Kumoh National Institute of Technology, Gumi, Korea. (김현호. 2014. 초분광 항공영상과 LiDAR DEM을 이용한 연안지역의 공간정보 추출. 금오공과대학교 박사학위논문).
  9. Kim, S.H., T.H. Kim and C.H. Hong. 2010. A study on classification of bed rock over antarctic Terra Nova Bay using hyperspectral image. Journal of Korea Spatial Information Society 18(5):55-61 (김선화, 김태훈, 홍창희. 2010. 초분광영상을 이용한 남극 제2기지 후보지에 대한 기반암 분류 연구. 한국공간정보학회지 18(5):55-61).
  10. Lyzenga, D.R. 1978. Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics 17(3):379-383. https://doi.org/10.1364/AO.17.000379
  11. Martin, S. 2004. An introduction to ocean remote sensing. Cambridge University Press, New York. pp.116-121.
  12. Mishra, D.R., S. Narumalani, D. Rundquist, M. Lawson and R. Perk. 2007. Enhancing the detection and classification of coral reef and associated benthic habitats: a hyperspectral remote sensing approach. Journal of Geophysical Research 112 (C8):1-18.
  13. Moon, S.J., B.G. Lee and J.S. Byun. 2014. A study on coastal area variation characteristics in Jeju Island. Proceedings of the Conference on Geospatial Information. pp.211-214 (문서정, 이병걸, 변지선. 2014. 제주도 연안역 해빈의 변화 특성에 관한 연구. 한국지형공간정보학회 학술대회. 211-214쪽).
  14. Oh, Y.S., B.K. Kim and H.S. Kim. 2005. The need of surveying coast and seabed information in Korea. The Journal of GIS Association of Korea 13(1):65-78 (오윤석, 김병국, 김형수. 2005. 우리나라 연안해역 해저정보조사의 필요성 및 조사방향에 관한 연구. 한국공간정보학회지 13(1):65-78).
  15. Stumpf, R.P., K. Holderied and M. Sinclair. 2003. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography 48(1):547-556. https://doi.org/10.4319/lo.2003.48.1_part_2.0547
  16. Tamir, C. and K. Arnon. 2015. Ground-level classification of a coral reef using a hyperspectral camera. Remote Sensing 7(6):7521-7544. https://doi.org/10.3390/rs70607521