DOI QR코드

DOI QR Code

Industrial applications and characteristics of lignocellulolytic enzymes in Basidiomycetous fungi

담자균류 목질섬유소 분해효소의 특성과 산업적 이용

  • Lim, Sun-Hwa (Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Kang, Hee-Wan (Graduate School of Future Convergence Technology, Hankyong National University)
  • 임선화 (한경대학교 미래융합기술대학원) ;
  • 강희완 (한경대학교 미래융합기술대학원)
  • Received : 2016.05.25
  • Accepted : 2016.06.27
  • Published : 2016.06.30

Abstract

Basidiomycetous fungi are one of the most potent biodegraders because many of its species grow on dead wood or litter, in environments rich in lignocellulose. For the degradation of lignocellulose, basidiomycetes utilize their lignocellulytic enzymes, which typically include laccase (EC 1.10.3.2), lignin peroxidase (EC 1.11.1.14), xylanase (EC 3.2.1.8), and cellulase (EC 3.2.1.4). In recent years, the practical applications of basidiomycetes have ranged from the textile to the pulp and paper industries, and from food applications to bioremediation processes and industrial enzymatic saccharification of biomass. Recently, spent mushroom substrates of edible mushrooms have been used as sources of bulk enzymes to decolorize synthetic dyes in textile wastewater. In this review, the occurrence, mode of action, general properties, and production of lignocellulytic enzymes from mushroom species will be discussed. We will also discuss the potential applications of these enzymes.

Keywords

References

  1. Almin K., Eriksson K, Pettersson B. 1975. Extracellular Enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the Breakdown of cellulose. 2. activities of the five endo-1,4,${\beta}$-glucanases towards carboxymethyl-cellulose. Eur J Biochem. 51: 207-211. https://doi.org/10.1111/j.1432-1033.1975.tb03920.x
  2. Altaf SA, Umar DM, Muhammad MS. 2010. Production of xylanase enzyme by Pleurotus eryngii and Flamulina velutipes grown on different carbon sources under submerged fermentation. World Appl Sci J. 8: 47-49
  3. Ayala M, Gonzalez-Munoz SS. Pinos-Rodriguez JM. Vazquez C, Meneses, M. Loera O. Mendoza GD. 2011) Fibrolytic potential of spent compost of Agaicus birsporus to degrade forages for ruminants. African J Microbiol Res. 5:643-650.
  4. Baldrian P. 2011. production of lignocellulytic enzymes by mushrooms. Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7)
  5. Baldrian P, Valasova V. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32: 501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
  6. Ball AS, Jacson AM. 1995. The recovery of lignocelluloseodegrading enzymes from spent mushroom compost. Bioroes. Technol. 54:311-314. https://doi.org/10.1016/0960-8524(95)00153-0
  7. Banci L, Ciofi-Baffoni S, Tien M. 1999. Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers. Biochemistry 38: 3205-3210. https://doi.org/10.1021/bi982139g
  8. Bayer EA, Chanzy H, Lamed R, Shoham Y. 1998. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol. 8:548-557. https://doi.org/10.1016/S0959-440X(98)80143-7
  9. Bolobova AV, Askadskii AA, Kondrashchenko VI, Rabinovich ML. 2002. Theoretical principles of technology of wood composites. Book II. Enzymes, Models, Processes [in Russian], Nauka, Moscow
  10. Brijwani K, Rigdon A, Vadlani PV. 2010. Fungal laccases: production, function, and applications in food processing. Enzyme Res. 2010: 1-10
  11. Bushwell JA. 1998. Production of lignocellulolytic enzymes by edible mushrooms and their role in substrate utilization. Paper presented at Icro Unesco University Malaya, Kuala Lumpur, Malaysia, pp. 1-5
  12. Cai YJ. Buswell JA, Chang ST. 1994. Cellulase and hemicellulase of Volvalriella volvacea and the effect of Tween 80 on enzyme productoin. Mycol Res. 98:440-446
  13. Call HP, Mucke I. 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediatorsystems. J Biotechnol. 53:163-202. https://doi.org/10.1016/S0168-1656(97)01683-0
  14. Collins T, Gerday C, Feller G. 2005. Xylanases, xylanases families and extremophilic xylanases, FEMS Microbiol Rev 29:3-23. https://doi.org/10.1016/j.femsre.2004.06.005
  15. Couto SR, Toca Herrera JL .2006. Industrial and biotechnological applications of laccases: a review. Biotech Adv. 24: 500-513. https://doi.org/10.1016/j.biotechadv.2006.04.003
  16. Dashtban M, Schraft H, Wensheng QW. 2009 Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Internl J Biol Sci. 2009;5:578-595
  17. Duran N, Rosa MA. D'Annibale A, Gianfreda L. 2002. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: review, Enzyme Microbiol Technol. 31: 907-931. https://doi.org/10.1016/S0141-0229(02)00214-4
  18. Eriksson K, Pettersson B. 1975. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the Breakdown of cellulose. 1. Separation, Purification and Physico-Chemical Characterization of Five Endo,1,4-glucanases. Eur J Biochem. 51: 193-218. https://doi.org/10.1111/j.1432-1033.1975.tb03919.x
  19. Fujita Y, Katahira S, Ueda M, Tanaka A, Okada H, Morikawa Y, Fukuda H, Kondo A. 2002. Construction of whole-cell biocatalyst for xylan degradation through cell-surface xylanase display in Saccharomyces cerevisiae. J Mol Catal B Enzym. 17:189-195. https://doi.org/10.1016/S1381-1177(02)00027-9
  20. Ganesh R, Boardman GD, Michelson D. 1994. Fate of azo dyes in sludges. Water Res. 28:1367-1376. https://doi.org/10.1016/0043-1354(94)90303-4
  21. Gasecka M, Drzewiecka K, Stachowiak J, Siwulski M, Golin'ski P, Sobieralski K, Golak I. 2012. Degradation of polycyclic aromatic hydrocarbons (PAHs) by spent mushroom substrates of Agaricus bisporus and Lentinula edodes. Acta Scientiarum Polonorum- Hortorum Cultus. 11:39-46.
  22. Gawande PV, Kamat MY. 1999. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. J Appl Microbiol. 87:511-519. https://doi.org/10.1046/j.1365-2672.1999.00843.x
  23. Gianfreda L, Xu F, Bollag JM. 1999. Laccases: a useful group of oxidoreductive enzymes. Bioremed J. 3:1-25. https://doi.org/10.1080/10889869991219163
  24. Gianluca B, Chiara L, Giovanni M, Patrizia R, Carla, P, Luciano V, Francesco G. 2008. Molecular cloning and heterologous expression of a laccase gene from Pleurotus eryngii in free and immobilized Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol. 79:731-741. https://doi.org/10.1007/s00253-008-1479-1
  25. Giardina P, Palmieri G, Scaloni A, Fontanella B, Faraco V, Cennamo G, Sannia G. 1999. Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem J. 341:655-663.
  26. Guo M, Lu F, Pu J, Bai D, Du L. 2005. Molecular cloning of the DNA encoding laccase from Trametes versicolor and heterologous expression in Pichia methanolica. Appl Microbiol Biotechnol. 69:178-183. https://doi.org/10.1007/s00253-005-1985-3
  27. Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Zupancic S. 1996. Production of fungal xylanases. Biores Technol 58: 137-161. https://doi.org/10.1016/S0960-8524(96)00094-6
  28. Hazlewood GP, Gilbert HJ. 1993. Molecular biology of hemicellulases. In: Coughlan, M. P and Hazlewood G. P(eds.), Hemicelluloses and Hemicellulases. Portland Press, London, UK.
  29. He J, Zhang K, Ding X, Chen D. 2009. Expression of endo-1, 4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol. 9:56-66. https://doi.org/10.1186/1472-6750-9-56
  30. Kibbelwhite PR, Clark TA. 1996. Enzymatic modification of radiata pine kraft fiber and handsheet properties. Appia J. 49:390-396.
  31. Ko HK, Park SH, Kim SH, Park HG, Park WM. 2005. Detection and recovery of hydrolytic enzymes from spent compost of four mushroom species. Folia Microbiol. 50:103-106. https://doi.org/10.1007/BF02931456
  32. Kunamneni A. Ballesteros A, Plou FJ Alcade M. 2007. Fungal laccases-a versatile enzyme for biotechnological applications, pp. 233-244, in Communicating Current Research and Educational Topics and Trends in Applied Microbiology, A. Mendez-Vilas(ed), Formatex, Badajoz, Spain.
  33. Lee JW, Gwak KS, Kim SI, Kim MY, Choi DH, Choi IG. 2007. Characterization of xylanase from Lentinus edodes M290 cultured on waste mushroom logs. Microbiol Biotechnol.17:1811-1817
  34. Lim SH, Kim JK, Lee YH, Kang HW. 2012. Production of lignocellulytic enzymes from spent mushroom compost of Pleurotus eryngii. Kor J Mycol. 40:152-158. (in Korean) https://doi.org/10.4489/KJM.2012.40.3.152
  35. Lim SH, Lee YH, Kang HW. 2013. Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization. Mycobiology 41:214-220. https://doi.org/10.5941/MYCO.2013.41.4.214
  36. Lim SH, Lee YH, Kang HW. 2013. Optimal extraction and characteristics of lignocellulytic enzymes from various spent mushroom composts. Kor J Mycol. 41:160-166(in Korean). https://doi.org/10.4489/KJM.2013.41.3.160
  37. Ljungdahl LG. 2008. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use, Ann N Y Acad Sci, 1125:308-321. https://doi.org/10.1196/annals.1419.030
  38. Matcham SE, Wood DA. 1992. Purification of Agaricus bisporus extracellular laccase from mushroom compost. Biotechnol. Lett. 14:297-300. https://doi.org/10.1007/BF01022327
  39. Mayer AM, Staples RC. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60:551-565. https://doi.org/10.1016/S0031-9422(02)00171-1
  40. Minussi, RC, Rossi M, Bologna L, Rotilio D, Pastore GM, Duran N .2007. Phenols removal in musts: strategy for wine stabilization by laccase, J. Mol. Catal. B: Enzymes 45: 102-107. https://doi.org/10.1016/j.molcatb.2006.12.004
  41. Minussi R, Pastore G. M, Duran N. 2002. Potential applications of laccase in the food industry. Trends Food Sci Technol. 13:205-216. https://doi.org/10.1016/S0924-2244(02)00155-3
  42. Moosvi S, Kher X, Madamwar D. 2007. Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes and Pigments. 74: 723-729. https://doi.org/10.1016/j.dyepig.2006.05.005
  43. Mukherjeem M, Senguptaa S. 1985. Inducible Xylanase of the Mushroom Termitomyces clypeatus Differing from the Xylanase/Amylase Produced in dextrin Medium. J General Microbiol. 131: 1881-1885.
  44. Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, et al. 2010 Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 28: 957-963. https://doi.org/10.1038/nbt.1643
  45. O'Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM, Delee W. 1999. Color in textile effluents sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009-1018. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N
  46. Oscar R-C, Trajano HL, Sheldon J.B. Duff SJB. 2014. Stability of commercial glucanase and ${\beta}$-glucosidase preparations under hydrolysis conditions. Peer J: e 402.
  47. Pandey KK, Pitman AJ 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Internl Biodet Biodeg. 52:151-160. https://doi.org/10.1016/S0964-8305(03)00052-0
  48. Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P. 2003.Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb. Technol. 33:135-325. https://doi.org/10.1016/S0141-0229(03)00194-7
  49. Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G. 1997. A novel white laccase from Pleurotus ostreatus. J Biol Chem. 272:31301-31307. https://doi.org/10.1074/jbc.272.50.31301
  50. Papinutti L, Forchiassin F. 2010. Adsorption and decolorization of dyes using solid residues from Pleurotus ostreatus mushroom production. Biotech Biop Engin. 15:1102-1109. https://doi.org/10.1007/s12257-010-0074-3
  51. Park YJ, Baek JH, Lee SW et al. 2014. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. Plos One 9: e93560 https://doi.org/10.1371/journal.pone.0093560
  52. Perry CR, Matcham SE, Wood DA, hurston CF. 1993. The structure of laccase protein and its synthesis by the commercial mushroom Agaricus bisporus. J Gen Microbiol. 139:171-178. https://doi.org/10.1099/00221287-139-1-171
  53. Pastor FI, Gallardo JO, Sanz-Aparicio J, Diaz P. 2007. Xylanases:Molecular Properties and Applications, pp. 65-85 In: Polaina, J and MacCabe A. P (Eds). Industrial Enzymes: Structure, Function and Applications. Springer. Dordrecht, The Netherlands.
  54. Pettersson G. 1969 Studies on celluloytic enzymes. VI. specificity and mode of action on different substrates of a cellulase from Penicillium notatum. Arch Biochem Biophys. 130-286.
  55. Polizeli ML, Rizzatti AC, Monti R. Terenzi HF, Jorge JA, Amorim DS. 2005. Xylanases from fungi: Properties and industrial applications. Appl Microbiol Biotechnol. 67:577-591. https://doi.org/10.1007/s00253-005-1904-7
  56. Prade RA. 1995. Xylanases, from biology to biotechnology. Biotechnol Genet Eng Rev 13:101-131.
  57. Reese E, Siu R, Levinson H. 1950. The biological degradation of soluble cellulose derivatives and Its relationship to the mechanism of cellulose hydrolysis. J Appl Bacteriol. 59:485-497.
  58. Sanchez C. 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv. 27:185-194. https://doi.org/10.1016/j.biotechadv.2008.11.001
  59. Saranyu K, Rakrudee S. 2007. Laccase from spent mushroom compost of Lentinus polychrous Lev. and its potential for remazol brilliant blue R decolourisation. Biotechnology 6: 408-413. https://doi.org/10.3923/biotech.2007.408.413
  60. Scarse R. 1995. Cultivating mushrooms-the potential, Mycologist 9:18-19. https://doi.org/10.1016/S0269-915X(09)80242-5
  61. Shin KS, Oh IK, Kim CJ. 1997. Production and purification of remazol brilliant blue R. decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl Environ Microbiol. 63: 1744-1748.
  62. Singh AD, Abdullah N, Vikineswary S. 2003. Optimization of extraction of bulk enzymes from spent mushroom compost. J Chem Technol Biotechnol. 78:743-752. https://doi.org/10.1002/jctb.852
  63. Spano L, Medeiros J, Mandels M. 1975 Enzymatic Hydrolysis of Cellulosic Waste to Glucose. Resour Recov Conserv. 1:279-294.
  64. Sunna A, Antranikian G. 1997. Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17:39-67. https://doi.org/10.3109/07388559709146606
  65. Weng JK, Li X, Bonawitz ND, Chapple C. 2008. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol. 19:166-172. https://doi.org/10.1016/j.copbio.2008.02.014
  66. Whitaker DR. 1971. Enzymes 3rd Ed. 5, 274-275.
  67. Xu, F. 1997. Effect of redox potential and hydroxyde inhibition on the pH activity profile of fungal laccase. J Biol Chem. 272:924-928. https://doi.org/10.1074/jbc.272.2.924
  68. Yaropolov AI, Skorobogat'ko OV, Vartanov SS, Varfolomeev SD. 1994. Laccase, Properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol. 49:257-280. https://doi.org/10.1007/BF02783061