DOI QR코드

DOI QR Code

Availability Evaluation For Generation Orthoimage Using Photogrammetric UAV System

사진측량용 UAV 시스템을 이용한 정사영상 제작 및 활용성 평가

  • Shin, Dongyoon (Department of Spatial Information Engineering, Pukyong National University) ;
  • Han, Jihye (Department of Spatial Information Engineering, Pukyong National University) ;
  • Jin, Yujin (GIS Division, Korea Environmental Science & Technology Institute) ;
  • Park, Jaeyoung (Department of Spatial Information Engineering, Pukyong National University) ;
  • Jeong, Hohyun (Department of Spatial Information Engineering, Pukyong National University)
  • 신동윤 (부경대학교 공간정보시스템공학과) ;
  • 한지혜 (부경대학교 공간정보시스템공학과) ;
  • 진유진 (환경과학기술) ;
  • 박재영 (부경대학교 공간정보시스템공학과) ;
  • 정호현 (부경대학교 공간정보시스템공학과)
  • Received : 2016.04.15
  • Accepted : 2016.06.13
  • Published : 2016.06.30

Abstract

This study analyzes the accuracy of ortho imagery based on whether camera calibration performed or not, using an unmanned aerial vehicle which equipped smart camera. Photgrammetric UAV system application was developed and smart camera performed image triangulation, and then created image as ortho imagery. Image triangulation was performed depending on whether interior orientation (IO) parameters were considered or not, which determined at the camera calibration phase. As a result of the camera calibration, RMS error appeared 0.57 pixel, which is more accurate compared to the result of the previous study using non-metric camera. When IO parameters were considered in static experiment, the triangulation resulted in 2 pixel or less (RMSE), which is at least 200 % higher than when IO parameters were not considered. After generate ortho imagery, the accuracy is 89% higher when camera calibration are considered than when they are not considered. Therefore, smart camera has high potential to use as a payload for UAV system and is expected to be equipped on the current UAV system to function directly or indirectly.

본 연구는 스마트 카메라를 탑재한 무인항공기를 통해 얻은 영상을 이용하여 카메라 검정 유무에 따른 정사영상의 정확도를 분석하였다. 사진측량용 무인항공 시스템이 개발되었고, 스마트 카메라영상은 image triangulation을 거쳐, 정사영상으로 생성되었다. Image triangulation은 카메라 검정에서 결정된 Interior Orientation (IO) 파라미터의 고려 유무에 따라 수행되었다. 카메라 검정 결과, RMS error가 0.57 pixel로 나타났고, 이것은 비측량용 카메라를 이용한 기존의 연구와 비교했을 때, 우수한 정확도이다. Field experiment에서 IO 파라미터를 고려한 경우, triangulation 결과는 0.1 pixel (RMSE) 이내로 나타났고, 이것은 IO 파라미터를 고려하지 않은 경우에 비해 최소 2배 이상 향상된 결과였다. 정사영상을 제작한 결과, 카메라 검정 자료를 고려한 결과는 고려하지 않은 결과에 비해 정확도가 89 % 향상되었다. UAV 시스템을 위한 탑재체로써 스마트 카메라의 활용 가능성이 높으며, 직접 또는 간접적인 기능을 충분히 담당할 수 있을 것으로 기대된다.

Keywords

References

  1. Brown, D.C., 1971. Close-range camera calibration, Photogrammetric Engineering, 37(8): 855-866.
  2. Clarke, T.A., and J.G. Fryer, 1998. The development of camera calibration methods and models. The photogrammetric Record, 16: 51-66. https://doi.org/10.1111/0031-868X.00113
  3. Chang, Y.F., C.S. Chen, and H. Zhou, 2009. Smart phone for mobile commerce, Computer Standards & Interfaces, 31: 740-747. https://doi.org/10.1016/j.csi.2008.09.016
  4. Chiabrando, F., F. Nex, D. Piatti, and F. Rinaudo, 2011. UAV and PRV systems for photogrammetric surveys in archaelogical areas: two tests in the Piedmont region (Italy), Journal of Archaeological Science, 38: 697-710. https://doi.org/10.1016/j.jas.2010.10.022
  5. Cho, J.H., 2014. Accuracy and Economic Feasibility Study of Orthoimage Map Production using UAV, Master's Thesis., University of Seoul, Seoul, South Korea
  6. Cho, J.H., J.M. Kim, Y.S. Choi, and I.H. Jeong, 2014. Accuracy Study of Orthoimage Map Production using UAV. Proc. of 2014 Korean Society of Civil Engineers Annual Conference, pp. 1739-1740 (in Korean with English abstract).
  7. Dalamagkidis K., K.P. Valavanis, and L.A. Piegl, 2008. On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the National Airspace System, Progress Aerospace Sciences, 44: 503-519. https://doi.org/10.1016/j.paerosci.2008.08.001
  8. Eisenbeiss, H., and L. Zhang, 2006. Comparison of DSMs generated from mini UAV imagery and terrestrial laser scanner in a cultural heritage application. International Archives of photogrammetry Remote Sensing and Spatial Information Sciences, 36(5): 90-96.
  9. Everaerts, J., N. Lewyckyj, and D. Fransaer, 2004. Pegasus: Design of a Stratospheric Long Endurance Uav System for Remote Sensing, Proc. of International Archives of photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul, Turkey, XXXV, Part B2, pp. 29-33.
  10. Fraser, C.S., 1997. Digital camera self-calibration. ISPRS Journal of photogrammetry and Remote Sensing, 52(4): 149-159. https://doi.org/10.1016/S0924-2716(97)00005-1
  11. Jung, S.H., H.M. Lim, and J.G. Lee, 2010. Acquisition of 3D Spatial Information using UAV photogrammetric Method, Journal of the Korean Society of Surveying, Geodesy, photogrammetry and Cartography, 28(1):161-167 (in Korean with English abstract).
  12. Kim, S.K., Y.D. Sung, and K.W. Kim, 2014. A study on methods of utilizing unmanned aerial vehicle(UVA) in the area of spaial information, Korean Association of Cadastre Information, 28(1): 169-178 (in Korean with English abstract).
  13. Wolf, P.R., and B.A. Dewitt, 2000. Elements of photogrammetry with Applications in GIS. McGraw-Hill, Boston, Massachusetts.
  14. Yoon, B.Y. and J.W. Lee, 2014. A Study on Application of the UAV in Korea for Integrated Operation with Spatial Information, Journal of Korean Society for Geospatial Information System, 22(2): 3-9 (in Korean with English abstract). https://doi.org/10.7319/KOGSIS.2014.22.2.003

Cited by

  1. Estimation of Reservoir Area and Capacity Curve Equation using UAV Photogrammetry vol.24, pp.3, 2016, https://doi.org/10.7319/kogsis.2016.24.3.093
  2. 저가형 UAV 영상의 영상향상기법에 따른 결과 분석 vol.25, pp.3, 2017, https://doi.org/10.7319/kogsis.2017.25.3.003
  3. 피해목 위치자료를 이용한 북한산 국립공원 참나무시들음병 공간분석 vol.33, pp.5, 2016, https://doi.org/10.7780/kjrs.2017.33.5.3.10
  4. 3D맵핑을 이용한 문화재 지정구역 경관관리기법 연구 vol.36, pp.1, 2016, https://doi.org/10.14700/kitla.2018.36.1.097
  5. 원격탐사와 공간정보를 활용한 국가 재난원인 과학조사 및 재난 모니터링 vol.35, pp.5, 2016, https://doi.org/10.7780/kjrs.2019.35.5.2.1
  6. 스마트폰 영상정보를 활용한 쿼터니언 기반 후방교회법과 PnP 알고리즘의 외부표정요소 비교 분석 vol.37, pp.6, 2016, https://doi.org/10.7848/ksgpc.2019.37.6.465
  7. 전통조경 보존·관리를 위한 3차원 공간정보 적용방안 vol.38, pp.1, 2020, https://doi.org/10.14700/kitla.2020.38.1.077