DOI QR코드

DOI QR Code

Understanding the Role of Wonderment Questions Related to Activation of Conceptual Resources in Scientific Model Construction: Focusing on Students' Epistemological Framing and Positional Framing

과학적 모형 구성 과정에서 나타난 사고 질문의 개념적 자원 활성화의 이해 -인식론적 프레이밍과 위치 짓기 프레이밍을 중심으로-

  • Received : 2016.05.25
  • Accepted : 2016.06.16
  • Published : 2016.06.30

Abstract

The purpose of this study is to explore how students' epistemological framing and positional framing affect the role of wonderment questions related to the activation of conceptual resources and to investigate what contexts affect students' framings during scientific model construction. Four students were selected as focus group and they participated in collaborative scientific model construction of mechanisms relating to urination. According to the results, one student whose framings were "understanding phenomena" and "facilitator" asked wonderment questions, but the others whose framings were "classroom game" and "non-respondent" were not able to activate their conceptual resources. However, they were able to activate their conceptual resources when they shared the epistemological framing of "understanding phenomena" and shifted between the positional framings of "facilitator" and "respondent." Although they were able to activate their conceptual resources, these activated resources were not able to contribute to their model when they shifted to the framings of "classroom game" and "receiver." In contrast, when students constantly shared an "understanding phenomena" framing and dynamically shifted between the framings of "facilitator" and "respondent," they were able to activate various conceptual resources and develop their group model. The students' framings were affected by the contexts. These included: when students were confronted with cognitive difficulties and were not provided proper scaffolding; when the teacher played the role of answer provider and guided the activity with correctness; when there were several possible explanatory models that students could choose from; and when the teacher played the role of thought facilitator. This study contributes to supporting teaching and learning environments for productive scientific model construction.

본 연구에서는 과학적 모형 구성 과정에서 사고 질문에 의한 개념적 자원의 활성화가 학생들의 인식론적 프레이밍과 위치 짓기 프레이밍에 따라 어떻게 달라지는지, 어떠한 맥락들이 학생들의 프레이밍에 영향을 미치는지를 알아보고자 하였다. 중학교 2학년 학생들이 네 명씩 한 소집단을 이루어 배설 기작에 대한 소집단의 설명 모형을 협력적으로 구성하였다. 모형 구성 과정에서 다양한 사고 질문이 나타나며, 맥락에 따라 프레이밍이 변한 1개의 소집단을 초점집단으로 선정하였다. 담화 분석을 통해 모형 구성 과정에서 나타나는 학생들의 사고 질문과 개념적 자원의 활성화를 확인하였고, 그들의 인식론적 프레이밍과 위치 짓기 프레이밍을 추론하여 이에 영향을 미친 맥락들을 분석하였다. 연구 결과, 소집단 내에서 모형 구성 활동을 '현상 이해'로, 자신의 위치를 '촉진자'로 프레이밍 한 학생이 사고 질문으로 개념적 자원의 활성화를 촉진했지만, '교실 게임'과 '비응답자'로 프레이밍 한 다른 학생들에 의해 상호 작용이 단절되어 개념적 자원이 활성화되지 못하였다. 또한 학생들이 모두 '현상 이해', '촉진자'와 '응답자'로 프레이밍 한 경우 사고 질문을 통해 개념적 자원을 활성화 시킬 수 있었지만, 학생들의 프레이밍이 '교실 게임'과 '수용자'로 전환되었을 때 활성화된 개념적 자원이 소집단의 모형 구성에 기여하지 못하였다. 그러나 '현상 이해'의 인식론적 프레이밍을 지속적으로 공유하고, '촉진자'와 '응답자'로 위치 짓기 프레이밍을 서로 역동적으로 전환시킨 경우 학생들은 모두 동등한 인식적 권위를 갖고, 사고 질문을 통해 다양한 개념적 자원을 활성화시키며 소집단의 모형을 정교하게 발달시켰다. 이와 같은 모형 구성 과정에서 학생들의 프레이밍은 인지적 어려움의 지속과 정답 제공자 또는 사고 촉진자로서 교사의 역할 등에 영향을 받았다. 본 연구는 과학 수업에서 생산적인 모형 구성 활동을 지원하는 인식론적 프레이밍과 위치 짓기 프레이밍의 기초 정보를 제공할 것으로 기대된다.

Keywords

References

  1. Berland, L. K., & Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68-94. https://doi.org/10.1002/tea.20446
  2. Berland, L. K., & Reiser, B. J. (2011). Classroom communities' adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216. https://doi.org/10.1002/sce.20420
  3. Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2015). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching. doi:10.1002/tea.21257
  4. Chin, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of research in science teaching, 37(2), 109-138. https://doi.org/10.1002/(SICI)1098-2736(200002)37:2<109::AID-TEA3>3.0.CO;2-7
  5. Chin, C., & Brown, D. E. (2002). Student-generated questions: A meaningful aspect of learning in science. International Journal of Science Education, 24(5), 521-549. https://doi.org/10.1080/09500690110095249
  6. Chin, C., & Osborne, J. (2008). Students' questions: a potential resource for teaching and learning science. Studies in Science Education, 44(1), 1-39. https://doi.org/10.1080/03057260701828101
  7. Chin, C., & Osborne, J. (2010). Students' questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47(7), 883-908. https://doi.org/10.1002/tea.20385
  8. Clement, J. J. (2008). Student/teacher co-construction of visualizable models in large group discussion. In J. J. Clement & M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science (pp. 11-22). Springer Netherlands.
  9. diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and instruction, 10(2-3), 105-225. https://doi.org/10.1080/07370008.1985.9649008
  10. Elby, A., & Hammer, D. (2010). Epistemological resources and framing: A cognitive framework for helping teachers interpret and respond to their students' epistemologies. In L. D. Bendixen & F. C. Feucht (Eds.), Personal epistemology in the classroom: Theory, research, and implications for practice, (pp. 409-434). Cambridge University Press.
  11. Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20(4), 399-483. https://doi.org/10.1207/S1532690XCI2004_1
  12. Entwistle, N. J., & Ramsden, P. (1982). Understanding Student Learning, London: Croom Helms: NY: Nichols Publishing Co.
  13. Gilbert, J. K., Pietrocola, M., Zylbersztajn, A., & Franco, C. (2000). Science and education: Notions of reality, theory and model. In J. K. Gilbert and C. Boulter (Eds.), Developing models in science education (pp. 19-40). Springer Netherlands.
  14. Goffman, E. (1974). Frame analysis: An essay on the organization of experience. NY: Harper & Row.
  15. Greeno, J. G. (2009). A theory bite on contextualizing, framing, and positioning: A companion to Son and Goldstone. Cognition and Instruction, 27(3), 269-275. https://doi.org/10.1080/07370000903014386
  16. Hammer, D. (1996). More than misconceptions: Multiple perspectives on student knowledge and reasoning, and an appropriate role for education research. American Journal of Physics, 64(10), 1316-1325. https://doi.org/10.1119/1.18376
  17. Hammer, D. (2004). The variability of student reasoning, lecture 3: manifold cognitive resources. In E. Redish & M. Vicentini (Eds), Proceedings of the Enrico Fermi Summer School, Course CLVI (pp. 321-340). Bologna: Italian Physical Society
  18. Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 169-190). Mahwah, NJ: Erlbaum.
  19. Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp.89-120). Greenwich, CT: information Age Publishing.
  20. Harre, R., & van Langenhove, L. (Eds.), (1999). Positioning theory: Moral contexts of international action. London: Wiley-Blackwell.
  21. Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: Implications for teaching chemistry. Science education, 80(5), 509-534. https://doi.org/10.1002/(SICI)1098-237X(199609)80:5<509::AID-SCE2>3.0.CO;2-F
  22. Hogan, K., Nastasi, B. K., & Pressley, M. (1999). Discourse patterns and collaborative scientific reasoning in peer and teacher-guided discussions. Cognition and instruction, 17(4), 379-432. https://doi.org/10.1207/S1532690XCI1704_2
  23. Hutchison, P., & Hammer, D. (2010). Attending to student epistemological framing in a science classroom. Science Education, 94(3), 506-524.
  24. Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). "Doing the lesson" or" doing science": Argument in high school genetics. Science Education, 84(6), 757-792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  25. Kuhn, D. (1991). The skills of argument. UK: Cambridge University Press.
  26. Lee, Yun, & Kim. (2015). Exploring Small Group Argumentation and Epistemological Framing of Gifted Science Students as Revealed by the Analysis of Their Reponses to Anomalous Data. Journal of the Korean Association for Research in Science Education. 35(3), 419-429. https://doi.org/10.14697/jkase.2015.35.3.0419
  27. Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004). Epistemological resources: Applying a new epistemological framework to science instruction. Educational Psychologist, 39(1), 57-68. https://doi.org/10.1207/s15326985ep3901_6
  28. MacLachlan, G., & Reid, I. (1994). Framing and interpretation. Portland, OR: Melboume University Press.
  29. Maskill, R., & de Jesus, H. P. (1997). Pupils' questions, alternative frameworks and the design of science teaching. International Journal of Science Education, 19(7), 781-799. https://doi.org/10.1080/0950069970190704
  30. Oh (2015). A Theoretical Review and Trial Application of the 'Resources-Based View' (RBV) as an Alternative Cognitive Theory. Journal of the Korean Association for Science Education, 35(6), 973-986.
  31. Passmore, C., Stewart, J., & Cartier, J. (2009). Model-Based Inquiry and School Science: Creating Connections. School Science and Mathematics, 109(7), 394-402. https://doi.org/10.1111/j.1949-8594.2009.tb17870.x
  32. Philips, S. (1972). Participant structures and communicative competence: Warm Springs children in community and classroom. In C. Cazden, D Hymes, & V. John (Eds.), Functions of language in the classroom (pp. 370-394). New York, NY: Teachers College Press.
  33. Radinsky, J., Oliva, S., & Alamar, K. (2010). Camila, the earth, and the sun: Constructing an idea as shared intellectual property. Journal of Research in Science Teaching, 47(6), 619-642.
  34. Rea-Ramirez, M. A., Clement, J., & Nunez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In J. J. Clement & M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science (pp. 23-43). Springer Netherlands.
  35. Redish, E. F. (2004). A theoretical framework for physics education research: Modeling student thinking. In E. Redish & M. Vicentini (Eds), Proceedings of the Enrico Fermi Summer School, Course CLVI (pp. 1-63). Italian Physical Society: Italy.
  36. Rosenberg, S., Hammer, D., & Phelan, J. (2006). Multiple epistemological coherences in an eighth-grade discussion of the rock cycle. The Journal of the Learning Sciences, 15(2), 261-292. https://doi.org/10.1207/s15327809jls1502_4
  37. Scardamalia, M., & Bereiter, C. (1992). Text-based and knowledge based questioning by children. Cognition and instruction, 9(3), 177-199. https://doi.org/10.1207/s1532690xci0903_1
  38. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  39. Tabak, I., & Baumgartner, E. (2004). The teacher as partner: Exploring participant structures, symmetry, and identity work in scaffolding. Cognition and Instruction, 22(4), 393-429. https://doi.org/10.1207/s1532690Xci2204_2
  40. Tannen, D. (1993). Framing in discourse. NY: Oxford University Press.
  41. Tannen, D., & Wallat, C. (1993). Interactive frames and knowledge schemas in interaction: Examples from a medical examination/interview. In D. Tannen (Ed.), Framing in discourse (pp.57-76). New York: Oxford University Press.
  42. van de Sande, C. C., & Greeno, J. G. (2012). Achieving alignment of perspectival framings in problem-solving discourse. Journal of the Learning Sciences, 21(1), 1-44. https://doi.org/10.1080/10508406.2011.639000

Cited by

  1. 모형 구성 과정에서 나타나는 초등학생의 인지, 감정적 반박 -인식적 감정을 중심으로- vol.37, pp.1, 2016, https://doi.org/10.14697/jkase.2017.37.1.0155
  2. 분산 인지의 관점에 따른 모델링 중심 초등 과학 수업의 해석 vol.36, pp.1, 2016, https://doi.org/10.15267/keses.2017.36.1.016
  3. 볼록렌즈가 상을 만드는 원리에 대한 과학적 모형의 사회적 구성 프로그램 개발 및 적용 vol.28, pp.5, 2016, https://doi.org/10.3807/kjop.2017.28.5.203
  4. 과학 학습의 지식구성 과정에 대한 실제적 인식론 분석 vol.37, pp.2, 2018, https://doi.org/10.15267/keses.2018.37.2.173
  5. 소집단 논변 활동에서 협력적 성찰의 역할 탐색 -학생들의 인식적 고려와 실행을 중심으로- vol.39, pp.1, 2016, https://doi.org/10.14697/jkase.2019.39.1.1
  6. 학생 중심의 과학 학습 공동체 이해를 위한 행위주체성에 대한 이론적 고찰 vol.39, pp.1, 2019, https://doi.org/10.14697/jkase.2019.39.1.101
  7. 소집단 과학 논변 활동에서 초임 교사의 반응적 교수 실행의 특징과 한계 탐색 -프레이밍을 중심으로- vol.39, pp.6, 2016, https://doi.org/10.14697/jkase.2019.39.6.739
  8. 비생산적 논변에서 생산적 논변으로의 실행 변화 탐색 -인식론적 자원과 맥락을 중심으로- vol.41, pp.3, 2021, https://doi.org/10.14697/jkase.2021.41.3.193