DOI QR코드

DOI QR Code

Examining the Validity of History-of-Science-Based Evolution Concept Assessment and Exploring Conceptual Progressions by Contexts

과학사에 근거한 진화개념검사도구의 타당도 확인 및 맥락에 따른 진화개념 발달 탐색

  • Received : 2016.06.03
  • Accepted : 2016.06.27
  • Published : 2016.06.30

Abstract

Previous studies have investigated the similarity between the development of evolutionary explanations and students' conceptual developments on evolution. However, the validity and reliability of the assessment method reflecting the similarity have not been quantitatively examined yet. In addition, no study has examined the conceptual progressions of evolution concept based on contexts although literature has addressed the contextual difference of evolutionary explanation in the history of science. This study examined the validity and reliability of history-of-science-based evolution concept assessment using ordered multiple choice (OMC) methods and Rasch analysis and explored conceptual progression by three contexts (e.g., human, animal, and plant). The evolution concept assessment developed by Ha (2007) was used to examine 1711 elementary, middle, and high school students, and pre- and in-service science teachers' (biology majors and non-majors) evolution concepts. Internal consistency reliability and item response fitness of the OMC method that provide 0- to 4-point scores to creationism, teleology, intentionality, use/disuse, and natural selection respectively met the benchmark based on the Cronbach alpha and MNSQ indices of Rasch analysis. The level of elementary and middle school students' evolution concepts were located between intentionality and use/disuse while the level of high school and non-biology science teachers' evolution concepts were located between use/disuse and natural selection. The conceptual progressions of evolution concepts were differentiated according to three contexts. This study provided the quantitative evidence for the similarity between the development of evolutionary explanations and students' conceptual developments on evolution and suggest new analysis methods (i.e., OMC) of evolution concept assessment.

학생들의 진화에 대한 대안개념(목적론, 용불용설 등)이 과학사에서 나타나는 설명의 발전 형태와 유사하다는 연구는 있었다. 하지만 과학사적으로 설명의 발달과정을 반영하여 부분점수를 주는 평가방식은 활용되지 않았다. 이 연구의 목적은 창조론에서 자연선택까지 과학사적 발달과정을 반영하여 부분점수를 주는 방법을 제안하고 이 방법이 타당한지에 대한 양적인 증거를 수집하는 것이다. 이 연구는 과학사에 근거하여 진화개념검사도구의 학생응답을 순위선다형점수로 변환하고 부분채점모형의 라쉬모델분석을 포함한 통계적 방법으로 새로운 평가방식이 타당한지 확인하였다. 또한 개념발달이 인간, 동물, 문항의 상황에 따라 다른지 확인하였다. Ha(2007)가 개발한 검사도구를 활용하여 1711명의 초, 중, 고등학생과 비전공, 전공생물 교사를 대상으로 생성한 자료를 통하여 분석하였다. 창조론, 목적, 의도, 용불용설, 자연선택에 0점에서 4점씩 부분점수로 제시한 평가방법은 Cronbach alpha를 통한 내적일관성 신뢰도, 라쉬분석의 MNSQ값 등 통한 문항적합도를 확인한 결과 타당한 것으로 확인되었다. 초등학생과 중학생들의 개념수준은 의도에서 용불용설 단계에, 고등학생부터 용불용설 이후의 단계로 개념발달이 이루어지고 있었다. 진화설명의 발달 과정은 인간, 동물, 식물에 따라 차이가 나타남을 확인할 수 있었다. 이 연구는 과학사와 학생들의 개념발달이 유사하다는 기존의 주장에 새로운 양적증거를 추가하고, 진화개념 평가를 위한 새로운 분석방법을 제안한다.

Keywords

References

  1. Anderson, D. L., Fisher, K. M., & Norman, G. J. (2002). Development and evaluation of the conceptual inventory of natural selection. Journal of Research in Science Teaching, 39(10), 952-978. https://doi.org/10.1002/tea.10053
  2. Bowler, P. J. (2009). Evolution: The history of an idea. Berkeley, CA: University of California Press.
  3. Churchill, F. B. (1968). August Weismann and a break from tradition. Journal of the History of Biology, 1(1), 91-112. https://doi.org/10.1007/BF00149777
  4. Clement, J. (1983). A conceptual model discussed by Galileo and used intuitively by physics students. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 325-339). Hillsdale, NJ: Erlbaum.
  5. Fauth, B., Decristan, J., Rieser, S., Klieme, E., & Buttner, G. (2014). Student ratings of teaching quality in primary school: Dimensions and prediction of student outcomes. Learning and Instruction, 29, 1-9. https://doi.org/10.1016/j.learninstruc.2013.07.001
  6. George, D., & Mallery, P. (2003). SPSS for Windows step by step: A simple guide and reference. 11.0 update (4th ed.). Boston: Allyn & Bacon.
  7. Grant-Downton, R., & Dickinson, H. G. (2005). Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Annals of botany, 96(7), 1143-1164. https://doi.org/10.1093/aob/mci273
  8. Greene, J. C. (1992). From Aristotle to Darwin: Reflections on Ernst Mayr's interpretation in the growth of biological thought. Journal of the History of Biology, 25(2), 257-284. https://doi.org/10.1007/BF00162842
  9. Ha, M. (2007). Development of the instructional strategies of evolution based on the cross-sectional analysis of evolution conception. Unpublished master thesis. Cheong-ju: Korean National University of Education.
  10. Ha, M. Cha, H. Y., & Ku, S. (2012). A comparative study of Korean and United States college students' degree of religiosity, evolutionary interest, understanding and acceptance and their structures. Journal of the Korean Association for Research in Science Education, 32(10), 1537-1550.
  11. Ha, M., & Nehm, R. H. (2014). Darwin's difficulties and students' struggles with trait loss: cognitive-historical parallelisms in evolutionary explanation. Science & Education, 23(5), 1051-1074. https://doi.org/10.1007/s11191-013-9626-1
  12. Ha, M., Ku, S., & Cha, H. Y. (2010). Study of conceptions, interest and acceptance of evolution, and religiosity between biology majors and non-majors in colleges. Biology Education, 38(3), 467-475. https://doi.org/10.15717/bioedu.2010.38.3.467
  13. Ha, M., Lee, J. K., & Cha, H. Y. (2006). A cross-sectional study of students' conceptions on evolution and characteristics of conception formation about it in terms of the subjects: Human, animals and plants. Journal of Korean Association for Research in Science Education, 26(7), 813-825.
  14. Hair, Jr., J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate Data Analysis (6th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
  15. Johnson, R. L., & Peeples, E. E. (1987). The role of scientific understanding in college: student acceptance of evolution. The American Biology Teacher, 49(2), 93-98. https://doi.org/10.2307/4448445
  16. Jungwirth, E. (1975). The problem of teleology in biology as a problem of biology-teacher education. Journal of Biological Education, 9(6), 243-246. https://doi.org/10.1080/00219266.1975.9654037
  17. Kampourakis, K., & Zogza, V. (2007). Students' preconceptions about evolution: How accurate is the characterization as "Lamarckian" when considering the history of evolutionary thought? Science & Education, 16(3-5), 393-422. https://doi.org/10.1007/s11191-006-9019-9
  18. Kelemen, D. (1999a). The scope of teleological thinking in preschool children. Cognition, 70(3), 241-272. https://doi.org/10.1016/S0010-0277(99)00010-4
  19. Kelemen, D. (1999b). Function, goals and intention: children's teleological reasoning about objects. Trends in Cognitive Sciences, 3(12), 461-468. https://doi.org/10.1016/S1364-6613(99)01402-3
  20. Kelemen, D., Rottman, J., & Seston, R. (2013). Professional physical scientists display tenacious teleological tendencies: Purpose-based reasoning as a cognitive default. Journal of Experimental Psychology: General, 142(4), 1074. https://doi.org/10.1037/a0030399
  21. Lee, M. S., & Lee, K. J. (2006). Analysis of student conceptions in evolution based on science history. Journal of Korean Association for Research in Science Education, 26(1), 25-39.
  22. Nadelson, L. S., & Southerland, S. A. (2009). Development and preliminary evaluation of the measure of understanding of macroevolution: Introducing the MUM. The Journal of Experimental Education, 78(2), 151-190. https://doi.org/10.1080/00220970903292983
  23. Nehm, R. H., & Ha, M. (2011). Item feature effects in evolution assessment. Journal of Research in Science Teaching, 48(3), 237-256. https://doi.org/10.1002/tea.20400
  24. Nersessian, N. (1989). Conceptual change in science and in science education. Synthese, 80, 163-183. https://doi.org/10.1007/BF00869953
  25. Neumann, I., Neumann, K., & Nehm, R. (2011). Evaluating instrument quality in science education: Rasch-based analyses of a nature of science test. International Journal of Science Education, 33(10), 1373-1405. https://doi.org/10.1080/09500693.2010.511297
  26. Opfer, J. E., Nehm, R. H., & Ha, M. (2012).Cognitive foundations for science assessment design: Knowing what students know about evolution. Journal of Research in Science Teaching, 49(6), 744-777. https://doi.org/10.1002/tea.21028
  27. Osler, M. J. (2001). Whose ends? Teleology in early modern natural philosophy. Osiris, 16, 151-168. https://doi.org/10.1086/649343
  28. Seoh, K. H. R., Subramaniam, R., & Hoh, Y. K. (2016). How humans evolved according to grade 12 students in Singapore. Journal of Research in Science Teaching, 53(2), 291-323. https://doi.org/10.1002/tea.21256
  29. Van Driel, J. H., De Vos, W., & Verloop, N. (1998). Relating students' reasoning to the history of science: The case of chemical equilibrium. Research in Science Education, 28(2), 187-198. https://doi.org/10.1007/BF02462904
  30. Vosniadou, S. & Brewer, W. F. (1987). Theories of knowledge restructuring in development. Review of Educational Research, 51, 51-67.
  31. Wandersee, J. H. (1985). Can the history of science help science educators anticipate student's misconceptions. Journal of Research in Science Teaching, 23, 581-597.
  32. Willard, A. K., & Norenzayan, A. (2013). Cognitive biases explain religious belief, paranormal belief, and belief in life's purpose. Cognition, 129(2), 379-391. https://doi.org/10.1016/j.cognition.2013.07.016
  33. Wiser, M. & Carey, S. (1983). When heat and temperature were one. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 267-297). Hillsdale, NJ: Erlbaum.
  34. Wright, B.D. & Linacre, J.M. (1994). Reasonable mean-square-fit values. Rasch Measurement Transactions, 8(3), 370.

Cited by

  1. 중국, 미국, 독일의 생물전공자와 비교한 한국 생물예비교사의 자연선택개념 이해 수준 분석 vol.36, pp.5, 2016, https://doi.org/10.14697/jkase.2016.36.5.0729
  2. 의과대학생들의 생명 개념 인식에 관한 탐색적 연구 vol.19, pp.1, 2017, https://doi.org/10.17496/kmer.2017.19.1.36
  3. 진화개념의 역사에 근거한 한국과 미국 대학생의 진화개념 수준 비교 vol.37, pp.4, 2016, https://doi.org/10.14697/jkase.2017.37.4.659
  4. 진화개념의 역사에 근거한 한국과 미국 대학생의 진화개념 수준 비교 vol.37, pp.4, 2016, https://doi.org/10.14697/jkase.2017.37.4.659
  5. 문항 반응 분석을 활용한 초등학생과 중학생의 시스템 사고 검사 도구 타당도 검증 vol.67, pp.2, 2016, https://doi.org/10.25152/ser.2019.67.2.249
  6. 고등학생들의 과학사, 과학, 역사 과목에 대한 관계인식 탐색 -2015 개정 과학과 교육과정 진로선택 과목 '과학사'를 중심으로- vol.39, pp.5, 2019, https://doi.org/10.14697/jkase.2019.39.5.613