DOI QR코드

DOI QR Code

Evaluation of AF type cyclic plasticity models in ratcheting simulation of pressurized elbow pipes under reversed bending

  • Chen, Xiaohui (School of Control Engineering, Northeastern University) ;
  • Gao, Bingjun (School of Chemical Engineering and Technology, Hebei University of Technology) ;
  • Chen, Xu (School of Chemical Engineering and Technology, Tianjin University)
  • Received : 2016.02.27
  • Accepted : 2016.05.30
  • Published : 2016.07.20

Abstract

The ratcheting behavior was studied experimentally for Z2CND18.12N elbow piping under cyclic bending and steady internal pressure. Dozens of cyclic plasticity models for structural ratcheting responses simulations were used in the paper. The four models, namely, Bilinear (BKH), Multilinear (MKIN/KINH), Chaboche (CH3), were already available in the ANSYS finite element package. Advanced cyclic plasticity models, such as, modified Chaboche (CH4), Ohno-Wang, modified Ohno-Wang, Abdel Karim-Ohno and modified Abdel Karim-Ohno, were implemented into ANSYS for simulating the experimental responses. Results from the experimental and simulation studies were presented in order to demonstrate the state of structural ratcheting response simulation by these models. None of the models evaluated perform satisfactorily in simulating circumferential strain ratcheting response. Further, improvement in cyclic plasticity modeling and incorporation of material and structural features, like time-dependent, temperature-dependent, non-proportional, dynamic strain aging, residual stresses and anisotropy of materials in the analysis would be essential for advancement of low-cycle fatigue simulations of structures.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Abdel-Karim, M. and Ohno, N. (2000), "Kinematic hardening model suitable for ratchetting with steadystate", Int. J. Plast., 16(3-4), 225-240. https://doi.org/10.1016/S0749-6419(99)00052-2
  2. ANSYS, Inc. (2004), Guide to ANSYS user programmable Features (ANSYS release 9.0).
  3. Armstrong, P. and Frederick, C. (1966), "A mathematical representation of the multiaxial bauchinger effect", CEGB Report No RD/BN 731.
  4. Asada, S., Yamashita, N., Okamoto, A. and Nishiguchi, I. (2002), "Verification of alternative criteria for shakedown evaluation using flat head vessel", Proceedings of the Pressure Vessels and Piping Conference, Vancouver, BC, Canada, August, pp. 17-23.
  5. ASME (2007), American society of mechanical engineers, Section III, New York, NY, USA.
  6. Bari, S. and Hassan, T. (2000), "Anatomy of coupled constitutive models for ratcheting simulation", Int. J. Plast., 16(3-4), 381-409. https://doi.org/10.1016/S0749-6419(99)00059-5
  7. Bari, S. and Hassan, T. (2002), "An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation", Int. J. Plast., 18(7), 873-894. https://doi.org/10.1016/S0749-6419(01)00012-2
  8. Benallal, A. and Marquis, D. (1987), "Constitutive equations for nonproportional cyclic elasto viscoplasticity", J. Eng. Mater .Technol. ASME, 109(4), 326-336. https://doi.org/10.1115/1.3225985
  9. Besseling, J.F. (1958), "A theory of elastic, plastic and creep deformations of an initially isotropic material showing anisotropic strain-hardening, creep recovery, and secondary creep", J. Appl. Mech., 25, 529-536.
  10. Boussaa, D., Labbe, P. and Tang, H. (1993), "Fatigue-ratcheting analysis of pressurized elbows", ASME PVP, 266, 13-21.
  11. Chaboche, J.L. (1986), "Time-independent constitutive theories for cyclic plasticity", Int. J. Plast., 2(2), 149-188. https://doi.org/10.1016/0749-6419(86)90010-0
  12. Chaboche, J.L. (1991), "On some modifications of kinematic hardening to improve the description of ratchetting effects", Int. J. Plast., 7(7), 661-678. https://doi.org/10.1016/0749-6419(91)90050-9
  13. Chaboche, J.L. and Dang, V. (1979), "Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel", Proceedings of the 5th International Conference on SmiRT, Div. L, Berlin, Germany.
  14. Chen, X. and Jiao, R. (2004), "Modified kinematic hardening rule for multiaxial ratcheting prediction", Int. J. Plast., 20(4-5), 871-898. https://doi.org/10.1016/j.ijplas.2003.05.005
  15. Chen, X.H. and Chen, X. (2015), "Study on ratcheting effect of pressurized straight pipe with local wall thinning using finite element analysis", Proceedings of the 14th International Conference on Pressure Vessel Technology (ICPVT), Shanghai, China, September, Volumes 139-140, pp. 69-76. DOI: 10.1016/j.ijpvp.2016.03.005
  16. Chen, X.H. and Chen, X. (2016), "Effect of local wall thinning on ratcheting behavior of pressurized $90^{\circ}$ elbow pipe under reversed bending using finite element analysis", Steel Compos. Struct., Int. J., 20(4), 931-950. https://doi.org/10.12989/scs.2016.20.4.931
  17. Chen, X., Gao, B. and Chen, G. (2005a), "Multiaxial ratcheting of pressurized elbows subjected to reversed in-plane bending", J. Pres. Eq. Syst., 3, 38-44.
  18. Chen, X., Jiao, R. and Kim, K.S. (2005b), "On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel", Int. J. Plast., 21(1), 161-184. https://doi.org/10.1016/j.ijplas.2004.05.005
  19. Chen, X., Gao, B. and Chen, G. (2006), "Ratcheting study of pressurized elbows subjected to reversed inplane bending", J. Pres. Ves. - Trans. ASME, 128(4), 525-532. https://doi.org/10.1115/1.2349562
  20. Chen, X.H., Chen, X., Yu, D.J. and Gao, B.J. (2013), "Recent progresses in experimental investigation and finite element analysis of ratcheting in pressurized piping", Int. J. Pres. Ves. Pip., 101, 113-142. https://doi.org/10.1016/j.ijpvp.2012.10.008
  21. Chen, X.H., Chen, X., Chen, G. and Li, D.M. (2015), "Ratcheting behavior of pressurized Z2CND18.12N stainless steel pipe under different control modes", Steel Compos. Struct., Int. J., 18(1), 29-50. https://doi.org/10.12989/scs.2015.18.1.029
  22. Chen, X.H., Chen, X., Yu, W.W. and Li, D.M. (2016), "Ratcheting behavior of pressurized $90^{\circ}$ elbow piping subjected to reversed in-plane bending with a combined hardening model", Int. J. Pres. Ves. Pip., 137, 28-37. https://doi.org/10.1016/j.ijpvp.2015.04.016
  23. DeGrassi, G., Hofmayer, C., Murphy, A., Suzuki, K. and Namita, Y. (2003), "BNL nonlinear pre-test seismic analysis for the NUPEC ultimate strength piping test program", Trans SMiRT, 17, BNL-NUREG- 71119-2003-CP.
  24. DeGrassi, G., Nie, J. and Hofmayer, С. (2008), "Seismic analysis of large-scale piping systems for the JNES/NUPEC ultimate strength piping test program", NUREG/CR-6983, US Nuclear Regulatory Commision, Washington, D.C., USA.
  25. EN13445-3 (2002), Unfired Pressure Vessels-Part 3: Design, Annex C: Method based on stress categories.
  26. Fenton, M. and Hassan, T. (2014), "Low-cycle fatigue failure responses of long and short radius elbows", ASME PVP, V008T08A024.
  27. Gao, B. (2005), "Modeling of material multiaxial ratcheting and ratcheting prediction of pressure piping", Ph.D. Dissertation; Tianjin University of Technology, China. [In Chinese]
  28. Gao, B., Chen, X. and Chen, G. (2006), "Ratchetting and ratchetting boundary study of pressurized straight low carbon steel pipe under reversed bending", Int. J. Pres. Ves. Pip., 83(2), 96-106. https://doi.org/10.1016/j.ijpvp.2005.12.002
  29. Gaudin, C. and Feaugas, X. (2004), "Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses", Acta Mater., 52(10), 3097-3110. https://doi.org/10.1016/j.actamat.2004.03.011
  30. Halama, R. (2008), "A modification of abdelkarim-ohno model for ratcheting simulations", Technical Gazette, 15(3), 3-9.
  31. Hassan, T. and Rahman, S.M. (2009), "Simulation of ratcheting responses of elbow piping components", Proceedings of the Pressure Vessels and Piping Conference, Prague, Czech Republic, July, pp. 103-108.
  32. Hassan, T. and Rahman, M. (2015), "Constitutive models in simulating low-cycle fatigue and ratcheting responses of elbow", J. Pres. Ves. - Trans. ASME, 137(3), 031002-1-12. https://doi.org/10.1115/1.4029069
  33. Hassan, T., Rahman, M. and Bari, S. (2015), "Low-cycle fatigue and ratcheting responses of elbow piping components", J. Pres. Ves. - Trans. ASME, 137(3), 031010-1-12. https://doi.org/10.1115/1.4029068
  34. Huang, C.T., Iwan, W., Jaquay, K. and Chokshi, N. (1998), "Cyclic moment response characteristics and seismic margins of elbows", ASME PVP, 360, 271-282.
  35. Jiang, Y.Y. and Sehitoglu, H. (1996), "Modeling of cyclic ratcheting plasticity, part I: development of constitutive relations", J. Pres. Ves. - Trans. ASME, 63(3), 720-725.
  36. Jiang, Y.Y. and Sehitoglu, H. (1996), "Modeling of cyclic ratcheting plasticity, part II: comparison of model simulations with experiments", J. Pres. Ves. - Trans. ASME, 63(3), 726-733.
  37. KTA (1995), Kerntechnischer AusschuB; Sicherheitstechnische Regel des KTA, Komponenten des primärkreises von Leichtisserreaktoren, Teil: Auslegung, Konstruktion und Berchnung, Regelanderungsentwurf.
  38. Kang, G.Z., Gao, Q. and Yang, X.J. (2004), "Uniaxial and non-proportionally multiaxial ratcheting of SS304 stainless steel at elevated temperature: Experiments and simulations", Int. J. Nonlinear Mech., 39(5), 843-857. https://doi.org/10.1016/S0020-7462(03)00060-X
  39. Marquis, D. (1979), "Modelisation et identification de l'ecrouissage anisotrope des metaux", These de 3eme cycle; Universite Paris 6, France.
  40. McDowell, D. (1995), "Stress state dependence of cyclic ratchetting behavior of two rail steels", Int. J. Plast., 11(4), 397-421. https://doi.org/10.1016/S0749-6419(95)00005-4
  41. McDowell, D. (1997), "An approximate algorithm for elastic-plastic two-dimensional rolling/sliding contact", Wear, 211(2), 237-246. https://doi.org/10.1016/S0043-1648(97)00117-8
  42. Moreton, D., Yahiaoui, K. and Moffat, D. (1996), "Onset of ratchetting in pressurised piping elbows subjected to in-plane bending moments", Int. J. Pres. Ves. Pip., 68(1), 73-79. https://doi.org/10.1016/0308-0161(94)00041-7
  43. Ohno, N. and Wang, J.D. (1993a), "Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior", Int. J. Plast., 9(3), 375-390. https://doi.org/10.1016/0749-6419(93)90042-O
  44. Ohno, N. and Wang, J.D. (1993b), "Kinematic hardening rules with critical state of dynamic recovery. Part II: Application to experiments of ratcheting behavior", Int. J. Plast., 9(3), 391-403. https://doi.org/10.1016/0749-6419(93)90043-P
  45. Owen, D., Prakash, A. and Zienkiewicz, O. (1974), "Finite element analysis of non-linear composite materials by use of overlay systems", Comp. Struct., 4(6), 1251-1267. https://doi.org/10.1016/0045-7949(74)90035-2
  46. Prager, W. (1956), "A new method of analyzing stresses and strains in work-hardening plastic solids", J. Appl. Math., 23, 493-496.
  47. R5 (1990), Assessment Procedure for the High Temperature Response of Structures, Nuclear Electric plc, 2.
  48. Rahman, S.M. (2006), "Finite element analysis and related numerical schemes for ratcheting simulation", Ph.D. Dissertation; North Carolina State University, Raleigh, NC, USA.
  49. RCC-MR (1985), Design rules for class 1 equipment, RCC-MR codes; Revision.
  50. Rojiceka, J. and Halama, R. (2008), "Numerical simulations of pipeline bending tests", Appl. Comp. Mech., 2(1), 347-356.
  51. Stearns, J.C., Lam, P.C. and Scavuzzo, R.J. (1993), "Incremental plastic strain of a pipe elbow with varying bend radii", Proceedings of the Pressure Vessels and Piping Conference, Denver, CO, USA, July, pp. 169-174.
  52. Touboul, F., Lacire, M., Blay, N., Blanchard, M. and Le Breton, F. (1998), "Simplified methods for the evaluation of the seismic behaviour of piping system for criteria application", ASME PVP, 364, 117-128.
  53. Varelis, G.E., Karamanos, S.A. and Gresnigt, A.M. (2013), "Pipe elbows under strong cyclic loading", J. Pres. Ves. - Trans. ASME, 135(1), 011207-1-9.
  54. Varelis, G.E. and Karamanos, S.A. (2014), "Low-cycle fatigue of pressurized steel elbows under in-plane bending", J. Pres. Ves. - Trans. ASME, 137(1), 011401-1-10. https://doi.org/10.1115/1.4027316
  55. Vishnuvardhana, S., Raghavaa, G., Gandhia, P., Saravanana, M., Goyal, S., Arora, P., Guptab, S.K. and Bhasin, V. (2013), "Ratcheting failure of pressurised straight pipes and elbows under reversed bending", Int. J. Pres. Ves. Pip., 105-106, 79-89. https://doi.org/10.1016/j.ijpvp.2013.03.005
  56. Wang, L., Chen, G., Zhu, J.B., Sun, X.H., Mei, Y.H., Ling, X. and Chen, X. (2015), "Bending ratcheting behavior of pressurized straight Z2CND18.12N stainless steel pipe", Struct. Eng. Mech., Int. J., 52(6), 1135-1156.
  57. Yahiaoui, K., Moffat, D. and Moreton, D. (1996a), "Damage assessment of piping elbows loaded by steady internal pressure and dynamic in-plane or out-of-plane bending", Proceedings of the International Conference on Pressure Vessel Technology ICPVT, Volume 1, Montreal, QC, Canada, July, pp. 361-375.
  58. Yahiaoui, K., Moffat, D. and Moreton, D. (1996b), "Pressurized piping elbows under simulated seismic bending: design code implications", Proc. Inst. Mech. Eng. E.-J. Pro., 210(3), 159-170.
  59. Yamamoto, Y., Yamashita, N. and Tanaka, M. (2002), "Evaluation of thermal stress ratchet in plastic FEA", Proceedings of Pressure Vessels and Piping Conference, Vancouver, BC, Canada, August, pp. 3-10.
  60. Zakavi, S.J. and Nourbakhsh, M. (2014), "The ratcheting behaviour of stainless steel pressurized piping elbows subjected to dynamic out-of-plane moments", Mod. Mech. Eng., 4(3), 125-132. https://doi.org/10.4236/mme.2014.43012
  61. Zakavi, S.J. and Rahmani, V. (2014), "The ratcheting rate of stainless steel pressurized piping branch under seismic loading", Indian J. Sci. Res., 3(1), 191-199.
  62. Zakavi, S.J., Ajri, M. and Golshan, V. (2014), "The ratcheting behaviour of plain carbon steel pressurized piping elbows subjected to simulated seismic in-plane bending", World J. Mech., 4(7), 238-246. https://doi.org/10.4236/wjm.2014.47024
  63. Zhang, J. (2002), "Constitutive description for non-proportionally ratcheting of cyclically hardening material and its finite element implementation at high temperatures", Ph.D. Dissertation; Southwest Jiaotong University, China.

Cited by

  1. Ratcheting Behavior of Weld Joints Under Uniaxial Cyclic Loading Using Miniature Specimen pp.1995-8196, 2018, https://doi.org/10.1007/s12209-018-0160-8
  2. Ratcheting Effect of Pressurized 90° Elbow Pipe under In-Plane Opening, Closing, and Reverse Bending vol.10, pp.2, 2019, https://doi.org/10.1061/(ASCE)PS.1949-1204.0000369
  3. Local ratcheting behavior in notched 1045 steel plates vol.28, pp.1, 2016, https://doi.org/10.12989/scs.2018.28.1.001
  4. Constitutive model for ratcheting behavior of Z2CND18.12N austenitic stainless steel under non-symmetric cyclic stress based on BP neural network vol.28, pp.5, 2018, https://doi.org/10.12989/scs.2018.28.5.517
  5. Elasto-Plastic Analysis of Cylindrical Vessel with Arbitrary Material Gradation Subjected to Thermo-Mechanical Loading Via DTM vol.44, pp.10, 2016, https://doi.org/10.1007/s13369-019-03910-x
  6. Ratcheting behavior of 90° elbow piping under seismic loading vol.17, pp.5, 2016, https://doi.org/10.12989/eas.2019.17.5.489
  7. Ratcheting Simulation of a Steel Pipe with Assembly Parts under Internal Pressure and a Cyclic Bending Load vol.9, pp.23, 2019, https://doi.org/10.3390/app9235025