DOI QR코드

DOI QR Code

A high-order analytical method for thick composite tubes

  • Received : 2015.09.15
  • Accepted : 2016.06.01
  • Published : 2016.07.20

Abstract

In the present paper, a new high-order simple-input analytical method is used to study thick laminated composite straight tubes subjected to combined axial force, torque and bending moment. The most general displacement field of elasticity for an arbitrary laminated composite straight tube is obtained to analytically calculate stresses under combined loadings based on a layerwise method. The accuracy of the proposed method is subsequently verified by comparing the numerical results obtained using the proposed method with finite element method (FEM) and experimental data. The results show good corresponded. The proposed method provides advantages in terms of computational time compared to FEM.

Keywords

Acknowledgement

Supported by : Natural Sciences and Engineering Research Council of Canada (NSERC)

References

  1. Arani, A.G., Haghparast, E., Maraghi, Z.K. and Amir, S. (2015), "Static stress analysis of carbon nano-tube reinforced composite (CNTRC) cylinder under non-axisymmetric thermo-mechanical loads and uniform electro-magnetic fields", Compos. Part B: Eng., 68, 136-145. https://doi.org/10.1016/j.compositesb.2014.08.036
  2. Bai, Y., Ruan, W., Cheng, P., Yu, B. and Xu, W. (2014), "Buckling of reinforced thermoplastic pipe (RTP) under combined bending and tension", Ships Offshore Struct., 9(5), 525-539. https://doi.org/10.1080/17445302.2014.887171
  3. Capela, C., Ferreira, J.A.M., Febra, T. and Costa, J.D. (2015), "Fatigue strength of tubular carbon fibre composites under bending/torsion loading", Int. J. Fatigue, 70, 216-222. https://doi.org/10.1016/j.ijfatigue.2014.09.008
  4. Derisi, B. (2008), "Development of thermoplastic composite tubes for large deformation", Ph.D. Dissertation; Concordia University, Montreal, QB, Canada.
  5. Ji, X., Zhang, M., Kang, H., Qian, J. and Hu, H. (2014), "Effect of cumulative seismic damage to steel tubereinforced concrete composite columns", Earthq. Struct., Int. J., 7(2), 179-119. https://doi.org/10.12989/eas.2014.7.2.179
  6. Jolicoeur, C. and Cardou, A. (1994), "Analytical solution for bending of coaxial orthotropic cylinders", J. Eng. Mech., 120(12), 2556-2574. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2556)
  7. Jonnalagadda, A.K., Sawant, A.S., Rohde, S.R., Sankar, B.V. and Ifju, P.G. (2015), "An analytical model for composite tubes with bend-twist coupling",Compos. Struct., 131, 578-584. https://doi.org/10.1016/j.compstruct.2015.06.023
  8. Kollar, L. and Springer, G.S. (1992), "Stress analysis of anisotropic laminated cylinders and cylindrical segments", Int. J. Solid. Struct., 29(12), 1499-1517. https://doi.org/10.1016/0020-7683(92)90130-L
  9. Lekhnitskii, S.G. (1981), Theory of Elasticity of an Anisotropic Body, Mir Publisher, Moscow, Russia.
  10. Menshykova, M. and Guz, I.A. (2014), "Stress analysis of layered thick-walled composite pipes subjected to bending loading", Int. J. Mech. Sci., 88, 289-299. https://doi.org/10.1016/j.ijmecsci.2014.05.012
  11. Nowak, T. and Schmidt, J. (2015), "Theoretical, numerical and experimental analysis of thick walled fiber metal laminate tube under axisymmetric loads", Compos. Struct., 131, 637-644. https://doi.org/10.1016/j.compstruct.2015.06.019
  12. Reisman, H. (1980), Elasticity Theory and Applications, John Wily & Sons, New York, NY, USA.
  13. Rooney, F. and Ferrari, M. (2001), "Tension, bending, and flexure of functionally graded cylinders", Int. J. Solid. Struct., 38(3), 413-421. https://doi.org/10.1016/S0020-7683(00)00036-6
  14. Shadmehri, F., Derisi, B. and Hoa, S.V. (2011), "On bending stiffness of composite tubes", Compos. Struct., 93(9), 2173-2179. https://doi.org/10.1016/j.compstruct.2011.03.002
  15. Sun, X.S., Tan, V.B.C., Chen, Y., Tan, L.B., Jaiman, R.K. and Tay, T.E. (2014), "Stress analysis of multilayered hollow anisotropic composite cylindrical structures using the homogenization method", Acta Mechanica, 225(6), 1649-1672. https://doi.org/10.1007/s00707-013-1017-9
  16. Tarn, J. (2001), "Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads", Int. J. Solid. Struct., 38(46-47), 8189-8206. https://doi.org/10.1016/S0020-7683(01)00182-2
  17. Yazdani Sarvestani, H. (2015), "Effects of layup sequences on stresses of thick composite cantilever tubes", Adv. Compos. Mater., 1, 21.
  18. Yazdani Sarvestani, H. and Yazdani Sarvestani, M. (2011), "Interlaminar stress analysis of general composite laminates", Int. J. Mech. Sci., 53(11), 958-967. https://doi.org/10.1016/j.ijmecsci.2011.07.007
  19. Yazdani Sarvestani, H. and Yazdani Sarvestani, M. (2012), "Free-edge stress analysis of general composite laminates under extension, torsion and bending", Appl. Math. Model., 36(4),1570-1588. https://doi.org/10.1016/j.apm.2011.09.028
  20. Yazdani Sarvestani, H., Hoa, S.V. and Hojjati, M. (2016a), "Stress analysis of thick orthotropic cantilever tubes under transverse loading", Adv. Compos. Mater., 1-28.
  21. Yazdani Sarvestani, H., Hoa, S.V. and Hojjati, M. (2016b), "Effects of shear loading on stress distributions at sections in thick composite tubes", Compos. Struct., 140, 433-445. https://doi.org/10.1016/j.compstruct.2015.12.067
  22. Zhang, C., Hoa, S.V. and Liu, P. (2014), "A method to analyze the pure bending of tubes of cylindrically anisotropic layers with arbitrary angles including $0^{\circ}\;or\;90^{\circ}$",Compos. Struct., 109, 57-67. https://doi.org/10.1016/j.compstruct.2013.10.038
  23. Zozulya, V.V. and Zhang, C. (2012), "A high order theory for functionally graded axisymmetric cylindrical shells", Int. J. Mech. Sci., 60(1), 12-22. https://doi.org/10.1016/j.ijmecsci.2012.04.001

Cited by

  1. Bending behavior of SWCNT reinforced composite plates vol.24, pp.5, 2016, https://doi.org/10.12989/scs.2017.24.5.537