DOI QR코드

DOI QR Code

Multi-channel normalized FxLMS algorithm for active noise control

능동 소음 제어를 위한 정규화된 다채널 FxLMS 알고리즘

  • Chung, Ik Joo (Department of Electrical & Electronics Engineering, Kangwon National University)
  • Received : 2016.06.02
  • Accepted : 2016.07.05
  • Published : 2016.07.31

Abstract

In this paper, we propose a normalization algorithm that can be applied to adaptive filters for multi-channel active noise control. The FxLMS (Filtered-x Least Mean Square) algorithm for the single-channel active noise control can be normalized in the same way as the NLMS (Normalized Least Mean Square) algorithm, whereas in case of the multi-channel active noise control, the single-channel normalization for the FxLMS algorithm cannot be extended to the normalization for the multi-channel FxLMS algorithm straightforwardly. First, we adopt a generalized normalization algorithm for the multi-channel FxLMS algorithm based on the principle of minimal disturbance and then, proposed a normalized algorithm considering only diagonal elements to avoid computation for matrix inversion. We carried out performance comparisons of the proposed algorithm with other algorithms without normalization. It is shown that the proposed algorithm presents better convergence characteristics under non-stationary environments.

본 논문에서는 다채널 능동 소음 제어를 위한 적응 필터에 적용할 수 있는 정규화된 FxLMS(Filtered-x Least Mean Square) 알고리즘을 제안하였다. 단일 채널 능동 소음 제어를 위한 FxLMS 알고리즘의 경우는 기존의 NLMS(Normalized Least Mean Square) 알고리즘과 같은 방식으로 정규화할 수 있는 반면, 다채널 능동 소음 제어의 경우에는 단일 채널 방식의 정규화 알고리즘을 그대로 적용할 수 없다. 먼저, 최소 교란 원리에 근거한 일반화된 정규화 알고리즘을 이용하여, 역행렬 연산을 피하기 위하여 대각 성분만을 고려한 정규화 알고리즘을 제안하였다. 컴퓨터 모의 실험을 통하여 제안된 알고리즘을 정규화되지 않은 기존의 알고리즘들과 비교하였다. 제안된 알고리즘이 정규화되지 않은 기존의 알고리즘에 비하여 비정상 환경에서 우수한 성능을 가진다는 것을 보였다.

Keywords

References

  1. S. M. Kuo and D. R. Morgan, "Active noise control: A tutorial review," Proc. IEEE 87, 943-973 (1999). https://doi.org/10.1109/5.763310
  2. P. Leug, "Process of silencing sound oscillations," U.S. Patent 2043416 (1936).
  3. M. Hoyhtya and A. Mammela, "Adaptive inverse power control using an FxLMS," Vehicular Technology Conference, 3021-3025 (2007).
  4. A. N. Budati and B. B. Rao, "Performance analysis of feedforward adaptive noise canceller using NFxLMS algorithm," ijireeice 2, 1940-1944 (2014).
  5. S. Johansson, S. Nordebo, I. Claesson, T.L. Lago, and P. Sjosten, "A novel multiple-reference, multiple-channel, normalized Filtered-X LMS algorithm for active control of propeller-induced noise in aircraft cabins," Proc. of Inter-Noise 98, paper no. 224 (1998).
  6. S. Haykin, Adaptive Filter Theory (Prentice Hall, New Jersey, 2002), pp.321-323.
  7. M. Rupp and A. H. Sayed, "Modified FxLMS algorithms with improved convergence performance," IEEE Proceedings of ASILOMAR-29 2, pp. 1255-1259 (1996).
  8. M. Rupp, "Saving complexity of Modified Filtered-X LMS and delayed update LMS algorithms," IEEE Trans. Circuits Syst. II 44, 57-60 (1997). https://doi.org/10.1109/82.559371
  9. J. B. Allen and D. A. Berkley, "Image method for efficiently simulating small room acoustics," J. Acoust. Soc. Am. 65, 943-950 (1979). https://doi.org/10.1121/1.382599
  10. K. Lee, W. Gan, and S. M. Kuo, Subband Adaptive Filtering: Theory and Implementation (Wiley, West Sussex, 2009), pp. 18-20.