DOI QR코드

DOI QR Code

Microbe-Mediated Control of Mycotoxigenic Grain Fungi in Stored Rice with Focus on Aflatoxin Biodegradation and Biosynthesis Inhibition

  • Mannaa, Mohamed (Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Ki Deok (Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University)
  • Received : 2016.04.09
  • Accepted : 2016.06.04
  • Published : 2016.06.30

Abstract

Rice contaminated with fungal species during storage is not only of poor quality and low economic value, but may also have harmful effects on human and animal health. The predominant fungal species isolated from rice grains during storage belong to the genera Aspergillus and Penicillium. Some of these fungal species produce mycotoxins; they are responsible for adverse health effects in humans and animals, particularly Aspergillus flavus, which produces the extremely carcinogenic aflatoxins. Not surprisingly, there have been numerous attempts to devise safety procedure for the control of such harmful fungi and production of mycotoxins, including aflatoxins. This review provides information about fungal and mycotoxin contamination of stored rice grains, and microbe-based (biological) strategies to control grain fungi and mycotoxins. The latter will include information regarding attempts undertaken for mycotoxin (especially aflatoxin) bio-detoxification and microbial interference with the aflatoxin-biosynthetic pathway in the toxin-producing fungi.

Keywords

References

  1. De Datta SK. Principles and practices of rice production. New York: John Wiley & Sons; 1981.
  2. Oh JY, Jee SN, Nam Y, Lee H, Ryoo MI, Kim KD. Populations of fungi and bacteria associated with samples of stored rice in Korea. Mycobiology 2007;35:36-8. https://doi.org/10.4489/MYCO.2007.35.1.036
  3. Williams RJ, McDonald D. Grain molds in the tropics: problems and importance. Annu Rev Phytopathol 1983;21:153-78. https://doi.org/10.1146/annurev.py.21.090183.001101
  4. Mew TW, Gonzales P. A handbook of rice seedborne fungi. Los Banos: International Rice Research Institute; 2002.
  5. Chelkowski J. Cereal grain: mycotoxins, fungi and quality in drying and storage. Amsterdam: Elsevier Science Publishers; 1991.
  6. Filtenborg O, Frisvad JC, Thrane U. Moulds in food spoilage. Int J Food Microbiol 1996;33:85-102. https://doi.org/10.1016/0168-1605(96)01153-1
  7. Misra JK, Gergon EB, Mew TW. Storage fungi and seed health of rice: a study in the Philippines. Mycopathologia 1995;131:13-24. https://doi.org/10.1007/BF01103899
  8. Oh JY, Sang MK, Oh JE, Lee H, Ryoo MI, Kim KD. Microbial population, aflatoxin contamination and predominant Aspergillus species in Korean stored rice. Plant Pathol J 2010;26:121-9. https://doi.org/10.5423/PPJ.2010.26.2.121
  9. Park JW, Choi SY, Hwang HJ, Kim YB. Fungal mycoflora and mycotoxins in Korean polished rice destined for humans. Int J Food Microbiol 2005;103:305-14. https://doi.org/10.1016/j.ijfoodmicro.2005.02.001
  10. Sawane A, Sawane M. Mycotoxigenicity of Aspergillus, Penicillium and Fusarium spp. isolated from stored rice. Int J Curr Microbiol Appl Sci 2014;3:116-21.
  11. Khosravi AR, Shokri H, Zaboli F. Grain-borne mycoflora and fumonisin B1 from fresh-harvested and stored rice in northern Iran. Jundishapur J Microbiol 2013;6:e6414.
  12. Oh JY, Sang MK, Lee H, Ryoo MI, Kim KD. First detection of Penicillium fellutanum from stored rice in Korea. Res Plant Dis 2011;17:216-21. https://doi.org/10.5423/RPD.2011.17.2.216
  13. Oh JY, Kim EN, Ryoo MI, Kim KD. Morphological and molecular identification of Penicillium islandicum isolate KU101 from stored rice. Plant Pathol J 2008;24:469-73. https://doi.org/10.5423/PPJ.2008.24.4.469
  14. Taligoola HK, Ismail MA, Chebon SK. Mycobiota associated with rice grains marketed in Uganda. J Biol Sci 2004;4:271-8. https://doi.org/10.3923/jbs.2004.271.278
  15. Dvorackova I. Aflatoxins and human health. Boca Raton (FL): CRC Press; 1989.
  16. Agrios G. Plant pathology. 5th ed. Boston (MA): Elsevier Academic Press; 2005.
  17. Krysinska-Traczyk E, Dutkiewicz J. Aspergillus candidus: a respiratory hazard associated with grain dust. Ann Agric Environ Med 2000;7:101-9.
  18. Klich MA. Identification of common Aspergillus species. Utrecht: Centraalbureau voor Schimmelcultures; 2002.
  19. Abad A, Fernandez-Molina JV, Bikandi J, Ramirez A, Margareto J, Sendino J, Hernando FL, Ponton J, Garaizar J, Rementeria A. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol 2010;27:155-82. https://doi.org/10.1016/j.riam.2010.10.003
  20. Pitt JI, Hocking AD. Fungi and food spoilage. Boston (MA): Springer; 2009.
  21. Pitt JI. A laboratory guide to common Penicillium species. North Ryde: CSIRO; 1988.
  22. Bräse S, Encinas A, Keck J, Nising CF. Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 2009;109:3903-90. https://doi.org/10.1021/cr050001f
  23. Zhelifonova VP, Antipova TV, Kozlovsky AG. Secondary metabolites in taxonomy of the Penicillium fungi. Microbiology 2010;79:277-86. https://doi.org/10.1134/S002626171003001X
  24. Cabanes FJ, Bragulat MR, Castella G. Ochratoxin A producing species in the genus Penicillium. Toxins (Basel) 2010;2:1111-20. https://doi.org/10.3390/toxins2051111
  25. Tonon SA, Marucci RS, Jerke G, Garcia A. Mycoflora of paddy and milled rice produced in the region of northeastern Argentina and southern Paraguay. Int J Food Microbiol 1997;37:231-5. https://doi.org/10.1016/S0168-1605(97)00066-4
  26. Kozlovsky AG, Vinokurova NG, Adanin VM, Burkhardt G, Dahse HM, Grafe U. New diketopiperazine alkaloids from Penicillium fellutanum. J Nat Prod 2000;63:698-700. https://doi.org/10.1021/np9903853
  27. Vinokurova NG, Boichenko LV, Arinbasarov MU. Production of alkaloids by fungi of the genus Penicillium grown on wheat grain. Appl Biochem Microbiol 2003;39:403-6. https://doi.org/10.1023/A:1024576703367
  28. Cole RJ, Cox RH. Handbook of toxic fungal metabolites. New York: Academic Press; 1981.
  29. Flieger M, Wurst M, Shelby R. Ergot alkaloids - sources, structures and analytical methods. Folia Microbiol (Praha) 1997;42:3-29. https://doi.org/10.1007/BF02898641
  30. Gerhards N, Neubauer L, Tudzynski P, Li SM. Biosynthetic pathways of ergot alkaloids. Toxins (Basel) 2014;6:3281-95. https://doi.org/10.3390/toxins6123281
  31. Newberne PM. Mycotoxins: toxicity, carcinogenicity, and the influence of various nutritional conditions. Environ Health Perspect 1974;9:1-32.
  32. Wawrzyniak J, Waskiewicz A. Ochratoxin A and citrinin production by Penicillium verrucosum on cereal solid substrates. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014;31:139-48. https://doi.org/10.1080/19440049.2013.861933
  33. Kostecki M, Wisniewska H, Perrone G, Ritieni A, Golinski P, Chelkowski J, Logrieco A. The effects of cereal substrate and temperature on production of beauvericin, moniliformin and fusaproliferin by Fusarium subglutinans ITEM-1434. Food Addit Contam 1999;16:361-5. https://doi.org/10.1080/026520399283849
  34. Shotwell OL, Hesseltine CW, Stubblefield RD, Sorenson WG. Production of aflatoxin on rice. Appl Microbiol 1966;14:425-8.
  35. Reddy KR, Reddy CS, Abbas HK, Abel CA, Muralidharan K. Mycotoxigenic fungi, mycotoxins, and management of rice grains. Toxin Rev 2008;27:287-317. https://doi.org/10.1080/15569540802432308
  36. Liu Z, Gao J, Yu J. Aflatoxins in stored maize and rice grains in Liaoning Province, China. J Stored Prod Res 2006;42:468-79. https://doi.org/10.1016/j.jspr.2005.09.003
  37. Bansal J, Pantazopoulos P, Tam J, Cavlovic P, Kwong K, Turcotte AM, Lau BP, Scott PM. Surveys of rice sold in Canada for aflatoxins, ochratoxin A and fumonisins. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011;28:767-74. https://doi.org/10.1080/19440049.2011.559279
  38. Begum F, Samajpati N. Mycotoxin production on rice, pulses and oilseeds. Naturwissenschaften 2000;87:275-7. https://doi.org/10.1007/s001140050720
  39. Trung TS, Bailly JD, Querin A, Le Bars P, Guerre P. Fungal contamination of rice from south Vietnam, mycotoxinogenesis of selected strains and residues in rice. Rev Med Vet 2001;152:555-60.
  40. Abd-Allah EF, Ezzat SM. Natural occurrence of citrinin in rice grains and its biocontrol by Trichoderma hamatum. Phytoparasitica 2005;33:73-84. https://doi.org/10.1007/BF02980928
  41. Nguyen MT, Tozlovanu M, Tran TL, Pfohl-Leszkowicz A. Occurrence of aflatoxin $B_1$, citrinin and ochratoxin A in rice in five provinces of the central region of Vietnam. Food Chem 2007;105:42-7. https://doi.org/10.1016/j.foodchem.2007.03.040
  42. Sugimoto T, Minamisawa M, Takano K, Sasamura Y, Tsuruta O. Detection of ochratoxin A, citrinin and sterigmatocystin from stored rice by natural occurrence of Penicillium viridicatum and Aspergillus versicolor. J Food Hyg Soc Jpn 1977;18:176-81. https://doi.org/10.3358/shokueishi.18.176
  43. Luk KC, Kobbe B, Townsend JM. Production of cyclopiazonic acid by Aspergillus flavus Link. Appl Environ Microbiol 1977;33:211-2.
  44. Abbas HK, Cartwright RD, Shier WT, Abouzied MM, Bird CB, Rice LG, Ross PF, Sciumbato GL, Meredith FI. Natural occurrence of fumonisins in rice with Fusarium sheath rot disease. Plant Dis 1998;82:22-5. https://doi.org/10.1094/PDIS.1998.82.1.22
  45. Chung SH, Kim YB. Natural occurrence of fumonisin $B_1$ in Korean corn and rough rice. Food Sci Biotechnol 1995;4:212-6.
  46. Scott PM, Lawrence GA, Lombaert GA. Studies on extraction of fumonisins from rice, corn-based foods and beans. Mycotoxin Res 1999;15:50-60. https://doi.org/10.1007/BF02945215
  47. Kushiro M, Nagata R, Nakagawa H, Nagashima H. Liquid chromatographic detection of fumonisins in rice seed. Rep Natl Food Res Inst 2008;72:37-44.
  48. Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U. Fumonisin $B_2$ production by Aspergillus niger. J Agric Food Chem 2007;55:9727-32. https://doi.org/10.1021/jf0718906
  49. Richard JL, Lyon RL, Fichtner RE, Ross PF. Use of thin layer chromatography for detection and high performance liquid chromatography for quantitating gliotoxin from rice cultures of Aspergillus fumigatus Fresenius. Mycopathologia 1989;107:145-51. https://doi.org/10.1007/BF00707552
  50. Abd Alla ES. Natural occurrence of ochratoxin A and citrinin in food stuffs in Egypt. Mycotoxin Res 1996;12:41-4. https://doi.org/10.1007/BF03192079
  51. Pena A, Cerejo F, Lino C, Silveira I. Determination of ochratoxin A in Portuguese rice samples by high performance liquid chromatography with fluorescence detection. Anal Bioanal Chem 2005;382:1288-93. https://doi.org/10.1007/s00216-005-3254-9
  52. Uchiyama M, Isohata E, Takeda Y. A case report on the detection of ochratoxin-A from rice. Food Hyg Saf Sci 1976;17:103-4. https://doi.org/10.3358/shokueishi.17.103
  53. Okeke B, Seigle-Murandi F, Steiman R, Benoit-Guyod JL, Kaouadji M. Identification of mycotoxin-producing fungal strains: a step in the isolation of compounds active against rice fungal diseases. J Agric Food Chem 1993;41:1731-5. https://doi.org/10.1021/jf00034a040
  54. Tian H, Liu X. Survey and analysis on sterigmatocystin contaminated in grains in China. Wei Sheng Yan Jiu 2004;33:606-8.
  55. Llewellyn GC, Sherertz PC, Armstrong CW, Miller GB Jr, Reynolds JD, Kimbrough TD, Bean GA, Hagler WM Jr, Haney CA, Trempus CS, et al. Mycotoxigenic isolates and toxin production on buckwheat and rice hulls used as bedding materials. J Ind Microbiol 1988;3:351-6. https://doi.org/10.1007/BF01569556
  56. Mateo JJ, Mateo R, Jimenez M. Accumulation of type A trichothecenes in maize, wheat and rice by Fusarium sporotrichioides isolates under diverse culture conditions. Int J Food Microbiol 2002;72:115-23. https://doi.org/10.1016/S0168-1605(01)00625-0
  57. Lee T, Lee SH, Lee SH, Shin JY, Yun JC, Lee YW, Ryu JG. Occurrence of Fusarium mycotoxins in rice and its milling by-products in Korea. J Food Prot 2011;74:1169-74. https://doi.org/10.4315/0362-028X.JFP-10-564
  58. Sweeney MJ, Dobson AD. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int J Food Microbiol 1998;43:141-58. https://doi.org/10.1016/S0168-1605(98)00112-3
  59. Moore-Landecker E. Fundamentals of the fungi. Englewood Cliffs (NJ): Prentice-Hall; 1972.
  60. Squire RA. Ranking animal carcinogens: a proposed regulatory approach. Science 1981;214:877-80. https://doi.org/10.1126/science.7302565
  61. Trail F, Mahanti N, Linz J. Molecular biology of aflatoxin biosynthesis. Microbiology 1995;141(Pt4):755-65. https://doi.org/10.1099/13500872-141-4-755
  62. Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 2002;66:447-59. https://doi.org/10.1128/MMBR.66.3.447-459.2002
  63. Van Rensburg SJ, Cook-Mozaffari P, Van Schalkwyk DJ, Van der Watt JJ, Vincent TJ, Purchase IF. Hepatocellular carcinoma and dietary aflatoxin in Mozambique and Transkei. Br J Cancer 1985;51:713-26. https://doi.org/10.1038/bjc.1985.107
  64. Van Egmond HP, Jonker MA. Worldwide regulations for mycotoxins in food and feed in 2003. Rome: Food and Agriculture Organization; 2004.
  65. Cottyn B, Regalado E, Lanoot B, De Cleene M, Mew TW, Swings J. Bacterial populations associated with rice seed in the tropical environment. Phytopathology 2001;91:282-92. https://doi.org/10.1094/PHYTO.2001.91.3.282
  66. Hauptmann RM, Widholm JM, Paxton JD. Benomyl: a broad spectrum fungicide for use in plant cell and protoplast culture. Plant Cell Rep 1985;4:129-32. https://doi.org/10.1007/BF00571298
  67. Naseer R, Sultana B, Khan MZ, Naseer D, Nigam P. Utilization of waste fruit-peels to inhibit aflatoxins synthesis by Aspergillus flavus: a biotreatment of rice for safer storage. Bioresour Technol 2014;172:423-8. https://doi.org/10.1016/j.biortech.2014.09.017
  68. Ruiqian L, Qian Y, Thanaboripat D, Thansukon P. Biocontrol of Aspergillus flavus and aflatoxin production. KMITL Sci J 2004;4:1685-2044.
  69. Blakeman JP, Fokkema NJ. Potential for biological control of plant diseases on the phylloplane. Annu Rev Phytopathol 1982;20:167-90. https://doi.org/10.1146/annurev.py.20.090182.001123
  70. Ou SH. Rice diseases. 2nd ed. Wallingford: CABI Publishing; 1985.
  71. Mew TW, Rosales AM. Bacterization of rice plants for control of sheath blight caused by Rhizoctonia solani. Phytopathology 1986;76:1260-4. https://doi.org/10.1094/Phyto-76-1260
  72. Santoyo G, Orozco-Mosqueda MD, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 2012;22:855-72. https://doi.org/10.1080/09583157.2012.694413
  73. Kim YG, Kang HK, Kwon KD, Seo CH, Lee HB, Park Y. Antagonistic activities of novel peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum. J Agric Food Chem 2015;63:10380-7. https://doi.org/10.1021/acs.jafc.5b04068
  74. Kong Q, Shan S, Liu Q, Wang X, Yu F. Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. Int J Food Microbiol 2010;139:31-5. https://doi.org/10.1016/j.ijfoodmicro.2010.01.036
  75. Kong Q, Chi C, Yu J, Shan S, Li Q, Li Q, Guan B, Nierman WC, Bennett JW. The inhibitory effect of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus. Appl Microbiol Biotechnol 2014;98:5161-72. https://doi.org/10.1007/s00253-014-5632-8
  76. Reddy KR, Reddy CS, Muralidharan K. Potential of botanicals and biocontrol agents on growth and aflatoxin production by Aspergillus flavus infecting rice grains. Food Control 2009;20:173-8. https://doi.org/10.1016/j.foodcont.2008.03.009
  77. Lee SY, Oh JY, Ryoo ML, Kim KD. Biological control of the rice storage fungi Aspergillus and Penicillium species by antagonistic bacteria originated from rice. Plant Pathol J 2007;23:328.
  78. Mokiou S, Magan N. Physiological manipulation and formulation of the biocontrol yeast Pichia anomala for control of Penicillium verrucosum and ochratoxin A contamination of moist grain. Biocontrol Sci Technol 2008;18:1063-73. https://doi.org/10.1080/09583150802585769
  79. Kiessling KH, Pettersson H, Sandholm K, Olsen M. Metabolism of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria. Appl Environ Microbiol 1984;47:1070-3.
  80. De Bellis P, Tristezza M, Haidukowski M, Fanelli F, Sisto A, Mule G, Grieco F. Biodegradation of ochratoxin A by bacterial strains isolated from vineyard soils. Toxins (Basel) 2015;7:5079-93. https://doi.org/10.3390/toxins7124864
  81. Yu H, Zhou T, Gong J, Young C, Su X, Li XZ, Zhu H, Tsao R, Yang R. Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC Microbiol 2010;10:182. https://doi.org/10.1186/1471-2180-10-182
  82. Yu Y, Qiu L, Wu H, Tang Y, Yu Y, Li X, Liu D. Degradation of zearalenone by the extracellular extracts of Acinetobacter sp. SM04 liquid cultures. Biodegradation 2011;22:613-22. https://doi.org/10.1007/s10532-010-9435-z
  83. Ciegler A. Detoxification of aflatoxin-contaminated agricultural commodities. In: Rosenberg P, editor. Toxins: animal, plant and microbial. New York: Pergamon Press; 1978 p. 729-38.
  84. Ashworth LJ Jr, Schroeder HW, Langley BC. Aflatoxins: environmental factors governing occurrence in Spanish peanuts. Science 1965;148:1228-9. https://doi.org/10.1126/science.148.3674.1228
  85. Ciegler A, Lillehoj EB, Peterson RE, Hall HH. Microbial detoxification of aflatoxin. Appl Microbiol 1966;14:934-9.
  86. Hao YY, Brackett RE. Removal of aflatoxin $B_1$ from peanut milk inoculated with Flavobacterium aurantiacum. J Food Sci 1988;53:1384-6. https://doi.org/10.1111/j.1365-2621.1988.tb09282.x
  87. Lillehoj EB, Ciegler A, Hall HH. Aflatoxin $B_1$ uptake by Flavobacterium aurantiacum and resulting toxic effects. J Bacteriol 1967;93:464-71.
  88. Ciegler A, Peterson RE. Aflatoxin detoxification: hydroxydihydro-aflatoxin $B_1$. Appl Microbiol 1968;16:665-6.
  89. Line JE, Brackett RE. Role of toxin concentration and second carbon source in microbial transformation of aflatoxin $B_1$ by Flavobacterium aurantiacum. J Food Prot 1995;58:1042-4. https://doi.org/10.4315/0362-028X-58.9.1042
  90. Smiley RD, Draughon FA. Preliminary evidence that degradation of aflatoxin $B_1$ by Flavobacterium aurantiacum is enzymatic. J Food Prot 2000;63:415-8. https://doi.org/10.4315/0362-028X-63.3.415
  91. Petchkongkaew A, Taillandier P, Gasaluck P, Lebrihi A. Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): screening for aflatoxin $B_1$ and ochratoxin A detoxification. J Appl Microbiol 2008;104:1495-1502. https://doi.org/10.1111/j.1365-2672.2007.03700.x
  92. Sangare L, Zhao Y, Folly YM, Chang J, Li J, Selvaraj JN, Xing F, Zhou L, Wang Y, Liu Y. Aflatoxin $B_1$ degradation by a Pseudomonas strain. Toxins (Basel) 2014;6:3028-40. https://doi.org/10.3390/toxins6103028
  93. Teunisson DJ, Robertson JA. Degradation of pure aflatoxins by Tetrahymena pyriformis. Appl Microbiol 1967;15:1099-103.
  94. Cole RJ, Kirksey JW. Aflatoxin $G_1$ metabolism by Rhizopus species. J Agr Food Chem 1971;19:222-3. https://doi.org/10.1021/jf60174a044
  95. Manabe M, Matsuura S. Studies on the fluorescent compound in fermented foods. Part IV. Degradation of added aflatoxin during miso fermentation. Nihon Shokuhin Kogyo Gakkaishi 1972;19:275-9. https://doi.org/10.3136/nskkk1962.19.275
  96. Line JE, Brackett RE, Wilkinson RE. Evidence for degradation of aflatoxin $B_1$ by Flavobacterium aurantiacum. J Food Prot 1994;57:788-91. https://doi.org/10.4315/0362-028X-57.9.788
  97. Farzaneh M, Shi ZQ, Ghassempour A, Sedaghat N, Ahmadzadeh M, Mirabolfathy M, Javan-Nikkhah M. Aflatoxin $B_1$ degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control 2012;23:100-6. https://doi.org/10.1016/j.foodcont.2011.06.018
  98. Kusumaningtyas E, Widiastuti R, Maryam R. Reduction of aflatoxin $B_1$ in chicken feed by using Saccharomyces cerevisiae, Rhizopus oligosporus and their combination. Mycopathologia 2006;162:307-11. https://doi.org/10.1007/s11046-006-0047-4
  99. Bennett JW. Loss of norsolorinic acid and aflatoxin production by a mutant of Aspergillus parasiticus. Microbiology 1981;124:429-32. https://doi.org/10.1099/00221287-124-2-429
  100. Yu J, Bhatnagar D, Cleveland TE. Completed sequence of aflatoxin pathway gene cluster in Aspergillus parasiticus. FEBS Lett 2004;564:126-30. https://doi.org/10.1016/S0014-5793(04)00327-8
  101. Georgianna DR, Payne GA. Genetic regulation of aflatoxin biosynthesis: from gene to genome. Fungal Genet Biol 2009;46:113-25. https://doi.org/10.1016/j.fgb.2008.10.011
  102. Schmidt-Heydt M, Abdel-Hadi A, Magan N, Geisen R. Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature. Int J Food Microbiol 2009;135:231-7. https://doi.org/10.1016/j.ijfoodmicro.2009.07.026
  103. Verheecke C, Liboz T, Anson P, Diaz R, Mathieu F. Reduction of aflatoxin production by Aspergillus flavus and Aspergillus parasiticus in interaction with Streptomyces. Microbiology 2015;161(Pt5):967-72. https://doi.org/10.1099/mic.0.000070
  104. Chang PK. The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Mol Genet Genomics 2003;268:711-9.
  105. Woloshuk CP, Foutz KR, Brewer JF, Bhatnagar D, Cleveland TE, Payne GA. Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol 1994;60:2408-14.
  106. Meyers DM, Obrian G, Du WL, Bhatnagar D, Payne GA. Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl Environ Microbiol 1998;64:3713-7.
  107. Du W, Obrian GR, Payne GA. Function and regulation of aflJ in the accumulation of aflatoxin early pathway intermediate in Aspergillus flavus. Food Addit Contam 2007;24:1043-50. https://doi.org/10.1080/02652030701513826
  108. Yu J, Fedorova ND, Montalbano BG, Bhatnagar D, Cleveland TE, Bennett JW, Nierman WC. Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol Lett 2011;322:145-9. https://doi.org/10.1111/j.1574-6968.2011.02345.x