DOI QR코드

DOI QR Code

Petrological Characteristics of the Satkatbong Pluton, Yeongdeok, Korea

영덕 삿갓봉암체의 암석학적 특성

  • Lim, Hoseong (Department of Geology, Kyungpook National University) ;
  • Kim, Jung-Hoon (Department of Geology, Kyungpook National University) ;
  • Woo, Hyeondong (Department of Geology, Kyungpook National University) ;
  • Do, Jinyoung (Department of Cultural Properties, Gyeongju University) ;
  • Jang, Yun-Deuk (Department of Geology, Kyungpook National University)
  • 임호성 (경북대학교 자연과학대학 지질학과) ;
  • 김정훈 (경북대학교 자연과학대학 지질학과) ;
  • 우현동 (경북대학교 자연과학대학 지질학과) ;
  • 도진영 (경주대학교 문화재학과) ;
  • 장윤득 (경북대학교 자연과학대학 지질학과)
  • Received : 2016.04.06
  • Accepted : 2016.05.13
  • Published : 2016.06.30

Abstract

The Satkatbong pluton was studied with other plutons together, but some fundamental petrological characteristics were missing. This study mainly reports the petrography and geochemistry of the Satkatbong pluton comparing with the Daebo and the Bulguksa granitoids in south Korea. The Satkatbong pluton, which is host rock including a number of Mafic Magmatic Enclaves (MME), is north-south shaped dioritic pluton, located along the east coast of south Korea. The Satkatbong pluton seems to be unconformable with Cretaceous sedimentary rocks from fieldwork result. In geochemistry, the Satkatbong pluton, which is roughly similar with the Daebo granitoids, is classified into calc-alkali series rock and volcanic arc granitoid Tectonically. The fact that AlT value in marginal parts of amphiboles in the Satkatbong pluton is lower than other granitoids implies emplacement depth of the Satkatbong pluton was relatively shallow. The Satkatbong pluton shows different geochemical feature compared to the adjacent adakitic Yeongdeok granite. This seems to be caused by mafic mantle material expected from the occurrence of MMEs.

삿갓봉암체는 기존에 다른 암체들과 함께 연구된 바는 있으나 몇몇 기초적인 암석학적 특성은 다뤄지지 못했다. 본 연구에서는 삿갓봉암체에 대해 보다 자세한 암석학적 특성을 보고하고, 남한의 다른 대보화강암, 불국사화강암과 지화학적 특성을 비교하고자 한다. 삿갓봉암체는 영덕군 경정리에서 장사리에 걸쳐 남북으로 길게 신장된 형태로 발달한다. 삿갓봉암체는 대부분 섬록암질암으로 구성되어있으며, 염기성미립포유암(이하 MME)을 다량 포획하고 있다. 야외조사결과 삿갓봉암체와 인접하는 백악기 퇴적암은 상호 부정합관계가 예상된다. 지화학적 특성을 대보, 불국사 암군과 비교했을 때, 삿갓봉암체는 주원소와 미량원소 특성에서 대보화강암에 보다 유사한 분포 특성을 보였으며, 칼크알칼리 계열의 암석으로 분류되었다. 조구조적으로 삿갓봉암체는 섭입대 화강암의 특징을 보이며, 각섬석에서의 AlT 값은 타 암체들보다 낮은 값을 가져, 보다 얕은 정치 심도를 가졌던 것으로 예상된다. 삿갓봉암체는 뚜렷한 아다카이트 특성을 보이는 인근의 영덕화강암과는 다른 지화학적 특성을 가지고 있으며, 이는 MME의 산출로 예상되는 고철질 맨틀물질의 혼성에 의한 영향으로 예측된다.

Keywords

References

  1. Arth, J. G., 1976, Behavior of trace elements during magmatic processes: a summary of theoretical models and their applications. J. Res. US Geol. Surv.; (United States), 4.
  2. Barbarin, B. 1999, A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46, 605-626. https://doi.org/10.1016/S0024-4937(98)00085-1
  3. Barbarin, B. 2005, Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos, 80, 155-177. https://doi.org/10.1016/j.lithos.2004.05.010
  4. Bateman, P.C. and Chappell, B.W., 1979, Crystallization, fractionation, and solidification of the Tuolumne intrusive series, Yosemite National Park, California. Geological Society of America Bulletin, 90, 465-482. https://doi.org/10.1130/0016-7606(1979)90<465:CFASOT>2.0.CO;2
  5. Baxter, S. and Feely, M., 2002, Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76, 63-74. https://doi.org/10.1007/s007100200032
  6. Castillo, P.R., 2006, An overview of adakite petrogenesis. Chinese Science Bulletin, 51(3), 257-268. https://doi.org/10.1007/s11434-006-0257-7
  7. Chang, K.-H., Woo, B.-G., Lee, J.-H., Park, S.-O., and Yao, A., 1990, Cretaceous and Early Cenozoic Stratigraphy and History of Eastern Kyongsang Basin, S. Korea. Journal of the Geological Society of Korea, 26, 471-487.
  8. Cheong, C.-S., Kwon, S.-T., and Sagong, H., 2002, Geochemical and Sr-Nd-Pb isotopic investigation of Triassic granitoids and basement rocks in the northern Gyeongsang Basin, Korea: implications for the young basement in the East Asian continental margin. Island Arc, 11, 25-44. https://doi.org/10.1046/j.1440-1738.2002.00356.x
  9. Cheong, C.-S., Kwon, S.-T., Kim, J.-M., and Jang, B.-W., 1998, Geochemical and Isotopic Study of the Onjeongri Granite in the Northern Gyeongsang Basin, Korea: Comparison with Cretaceous to Tertiary Granitic Rocks in the Other Part of the Gyeongsang Basin and the Inner Zone of Southwest Japan. Journal of the Petrological Society of Korea, 7, 77-97.
  10. Cho, D.-L. and Kwon, S.-T., 1994, Hornblende Geobarometry of the Mesozoic Granitoids in South Korea and the Evolution of Crustal Thickness. Journal of the Geological Society of Korea, 30, 41-61.
  11. Chun, H.-Y., 2005, Natural Environment and Geology of the Eastern coast of Korea. Korea Institute of Geoscience and Mineral Resources, 138p.
  12. Defant, M.J. and Drummond, M.S., 1993, Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21, 547-550. https://doi.org/10.1130/0091-7613(1993)021<0547:MSHPEO>2.3.CO;2
  13. Han, M., Kim, J.-S., Yi, K., and Kim, S.-W., 2009, Petrological Study of the Dioritic and Granitic Rock from Geochang Area. Proceedings of the Annual Joint Conference, Jeonju, Korea, 123-126.
  14. Han, M., Kim, S.-W., Yang K.-H., and Kim J.,-S., 2010, Petrological Study of the Dioritic and Granitic Rocks from Geochang Area. Journal of the Petrological Society of Korea, 19, 167-180.
  15. Hatae, N., 1937, Geological Atlas of Korea, Yanghae and Yongdok sheet (1:50,000). Geological Survey of Korea.
  16. Irvine, T. and Baragar, W., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8, 523-548. https://doi.org/10.1139/e71-055
  17. Jin, M.S., Gleadow, A.J.W., and Lovering, J.F., 1984, Fission track dating of apatite from the Jurassic and Cretaceous granites in South Korea. Journal of the Geological Society of Korea, 20, 257-265.
  18. Jwa, Y.-J., 1996, Articles: Chemical Composition of Korean Cretaceous Granites in the Gyeongsang Basin I. Major Element Variation Trends. Journal of the Korean earth science society, 17, 318-325.
  19. Kim, J.-W., 1988, Petrology and fission track dating of the granitic rocks from the vicinity of Yongdok-Onjong area, northeastern Gyeongsang basin, Korea. Ph. D. dissertation, Kyungpook National University, 138p.
  20. Kim, J.-W. and Lee, Y.-J., 1992, Phase Transition of K-feldspar in the Plutonic Rocks from the Vicinity of Yongdok-Uljin Area, Northeastern Gyeongsang Basin, Korea. 47th Annual Joint Conference, Jeonju, Korea, 18-18.
  21. Kim, J.-W. and Lee, Y.-J., 1993, Phase Transition of K-feldspar in the Plutonic Rocks from the Vicinity of Yongdok-Uljin Area, Northeastern Gyeongsang Basin, Korea. Journal of the Korean Earth Science Society, 14, 316-325.
  22. Kim, K.-H., 1992, Geochemical Study of Some Mesozoic Granitic Rocks in South Korea. Journal of the Korean Institute of Mining Geology, 25, 435-446.
  23. Kim, O.-J., 1968, Explanatory Text of the Geological Map of Cheongha Sheet (1:50,000). Geological survey of Korea, 4-6, 12p.
  24. Kim, O.-J., 1971, Study on the Intrusion Epochs of Younger Granites and their Bearing to Orogenies in South Korea. Journal of the Korean Institute of Mining Geology, 4, 1-9.
  25. Kim, S.-J., 1997, Geochronology and geochemistry of the igneous activity and polymetallic mineralization in the northern Gyeongsang basin, Korea. Ph. D. dissertation, Chungnam National University, 276p.
  26. Kim, S.-J., Lee, H.-K., Lee, C.-H., and Itaya, T., 1999, K-Ar Ages and Geochemistry of Granitic Rocks in the Northeastern Gyeongsang Basin. Economic and Environmental Geology., 32, 141-150.
  27. Kim, S.-W., 1986, Study of Late Cretaceous Magmatism in the Kyeongsang Basin. Treatises in Commemoration of the 60th Birthday of Lee, S.-M., 167-194.
  28. Le Maitre, R.W., 1976, The chemical variability of some common igneous rocks. Journal of petrology, 17, 589-598. https://doi.org/10.1093/petrology/17.4.589
  29. Leake, B.E., 1971, On aluminous and edenitic hornblendes. Mineralogical Magazine, 38, 389-407. https://doi.org/10.1180/minmag.1971.038.296.01
  30. Lee, S.-M., Kim, S.-W., and Jin, M.-S., 1987, Igneous Activities of the Cretaceous to the Early Tertiary and their Tectonic Implications in South Korea. Journal of the Geological Society of Korea, 23, 338-359.
  31. Lee, Y.-J., Kim, J.-W., and Chung, W.-W., 1993, Evolution Trends of Biotite and Hornblende in Granitic Rocks form Yonghae-Yongdok Area, Northeastern Gyeongsang Basin, Korea. Journal of the Korean Institute of Mining Geology, 26, 349-361.
  32. Mahood, G. and Hildreth, W., 1983, Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47, 11-30. https://doi.org/10.1016/0016-7037(83)90087-X
  33. Nash, W.P. and Crecraft, H.R., 1985, Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49, 2309-2322. https://doi.org/10.1016/0016-7037(85)90231-5
  34. Pearce, J.A. and Norry, M.J., 1979, Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to mineralogy and petrology, 69, 33-47. https://doi.org/10.1007/BF00375192
  35. Pearce, J.A., Harris, N.B., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
  36. Schmidt, M.W., 1992, Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to mineralogy and petrology, 110, 304-310. https://doi.org/10.1007/BF00310745
  37. Shand, S.J., 1927, Eruptive rocks: their genesis, composition, classification, and their relation to ore-deposits, with a chapter on meteorites. T. Murby.
  38. Simakin, A., Zakrevskaya, O., and Salova, T., 2012, Novel amphibole geo-barometer with application to mafic xenoliths. Earth Science Research, 1, 82p.
  39. Spear, F.S., 1981, An experimental study of hornblende stability and compositional variability in amphibolite. American Journal of Science, 281, 697-734. https://doi.org/10.2475/ajs.281.6.697
  40. Streckeisen, A., 1976, To each plutonic rock its proper name. Earth-science reviews, 12, 1-33. https://doi.org/10.1016/0012-8252(76)90052-0
  41. White, A.J. and Chappell, B.W., 1977, Ultrametamorphism and granitoid genesis. Tectonophysics, 43, 7-22. https://doi.org/10.1016/0040-1951(77)90003-8
  42. Woo, H.-D. and Jang, Y.-D., 2014, Petrological Characteristics of the Yeongdeok granite. Journal of the Petrological Society of Korea, 23, 31-43. https://doi.org/10.7854/JPSK.2014.23.2.31
  43. Yi, K., Cheong, C.-S., Kim, J., Kim, N., Jeong, Y.J., and Cho, M., 2012, Late Paleozoic to Early Mesozoic arcrelated magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry. Lithos, 153, 129-141. https://doi.org/10.1016/j.lithos.2012.02.007