DOI QR코드

DOI QR Code

Electronic Structure Calculations of Cubane-type Cu4 Magnetic Molecule

Cubane 구조를 가진 Cu4 분자자성체의 전자구조 계산

  • 박기택 (국민대학교 나노전자물리학과)
  • Received : 2016.07.07
  • Accepted : 2016.08.08
  • Published : 2016.08.31

Abstract

We have studied electronic and magnetic structure of cubane-type Cu magnetic molecule using density functional method. The calculated density of states show that Cu has 3d $x^2-y^2$ hole orbital because of short distances between Cu atom and in-plane 4 ligand atoms. The calculated total energy with in-plane antiferromagnetic spin configuration is lower than those of ferromagnetic configurations. The calculated exchange interaction J between in-plane Cu atoms is much larger than those between out-plane Cu atoms, since the $x^2-y^2$ hole orbital ordering of Cu 3d orbitals induces strong super-exchange interaction between in-plane Cu atoms.

Cu 원자 4개를 포함한 cubane 구조의 분자자성체의 전기구조 및 자기적 성질을 제1원리의 범밀도함수법을 이용하여 계산하였다. 계산 된 결과, Cu 원자는 +2가를 가지며, 팔면체 배위자중 면내 짧은 4개의 배위산소원자로 인해 3d $x^2-y^2$ hole 궤도를 가지고 있었다. 스핀배열에 따른 총 에너지 계산에서 면내는 반강자성, 면간은 강자성 자기구조가 가장 안정되었다. 교환상호작용 J의 크기는 면내의 J가 훨씬 크고 반강자성 성질을 나타내었으며, 나머지 면간의 J값은 아주 작았다. 이러한 원인은 Cu $x^2-y^2$ hole 궤도정렬로 인하여 면내 강한 초교환상호작용의 결과이다.

Keywords

References

  1. K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, and S. Iwata, Science 303, 1831 (2004). https://doi.org/10.1126/science.1093087
  2. S. Yoon and S. J. Lippard, J. Am. Chem. Soc. 126, 2666 (2004). https://doi.org/10.1021/ja031603o
  3. To be published Polyhedron.
  4. T. M. Wilson, Int. J. Quantum Chem. IIIS, 757 (1970).
  5. K. Terakura, A. R. Williams, T. Oguchi, and J. Kubler, Phys. Rev. Lett. 52, 1830 (1984). https://doi.org/10.1103/PhysRevLett.52.1830
  6. K. Park, J. Korean Magn. Soc. 22, 121 (2012). https://doi.org/10.4283/JKMS.2012.22.4.121
  7. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864
  8. www.openmx-square.org.
  9. T. Ozaki, Phys. Rev. B 67, 155108 (2003). https://doi.org/10.1103/PhysRevB.67.155108
  10. T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004). https://doi.org/10.1103/PhysRevB.69.195113
  11. N. Troullier and L. J. Martine, Phys. Rev. B 43, 1993 (1991). https://doi.org/10.1103/PhysRevB.43.1993
  12. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  13. K. Terakura, T. Oguchi, A. R. Williams, and Kubler, Phys. Rev. B 30, 4734 (1984). https://doi.org/10.1103/PhysRevB.30.4734
  14. M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 74, 045110 (2006). https://doi.org/10.1103/PhysRevB.74.045110
  15. C. Cao, S. Hill, and H. Cheng, Phys. Rev. Lett. 100, 167206 (2008). https://doi.org/10.1103/PhysRevLett.100.167206
  16. S. M. Hayden, G. Aeppli, R. Osborn, A. D. Taylor, T. G. Perring, S. W. Cheong, and Z. Fisk, Phys. Rev. Lett. 67, 3622 (1991). https://doi.org/10.1103/PhysRevLett.67.3622
  17. S. Feldkemper, W. Weber, J. Schulenburg, and J. Richter, Phys. Rev. B 52, 313 (1995). https://doi.org/10.1103/PhysRevB.52.313
  18. N. Marino, D. Armentano, T. F. Mastropietro, M. Julve, G. D. Munno, and J. M. Martinez-Lillo, Inorg. Chem. 52, 11934 (2013). https://doi.org/10.1021/ic4016355