DOI QR코드

DOI QR Code

Selective Removal of Arsenic Compounds from the Contaminated Paddy Soil in China Using Froth Flotation Technique

포말부선 기술을 이용한 중국 오염농경지내 비소화합물의 선택적 제거

  • Lee, Seungwoo (Geo-environment Division, JIU Corporation) ;
  • Jeon, Chilsung (Geo-environment Division, JIU Corporation) ;
  • Lee, Eunseong (Geo-environment Division, JIU Corporation) ;
  • Yoo, Kyungmin (Geo-environment Division, JIU Corporation) ;
  • Choi, Junhyun (Department of Mineral Resources and Energy Engineering, Chonbuk National University) ;
  • Kim, Hyunjung (Department of Mineral Resources and Energy Engineering, Chonbuk National University)
  • 이승우 (지우이앤이(주) 지반환경사업부) ;
  • 전칠성 (지우이앤이(주) 지반환경사업부) ;
  • 이은성 (지우이앤이(주) 지반환경사업부) ;
  • 유경민 (지우이앤이(주) 지반환경사업부) ;
  • 최준현 (전북대학교 자원에너지공학과) ;
  • 김현중 (전북대학교 자원에너지공학과)
  • Received : 2015.11.06
  • Accepted : 2016.04.07
  • Published : 2016.07.31

Abstract

Effects of grinding time and chemicals dosage in arsenic removal from contaminated paddy soil in China were investigated using lab scale attrition and froth flotation combining process. Arsenic concentration in the field soil was 76.51 mg/kg, exceeding Korean and Chinese standards, and predominant arsenic compounds fraction in sequential extraction was "residual" (over 80%). After wet sieving, soil with >2 mm and < 0.038 mm showed concentration lower than 'Warning Level' in Korea. Soil with 0.038-0.075 mm, showing the highest concentration, was discarded since it occupied minor weight fraction (10.1%). Thus soil between 0.075 and 2 mm was only used in the combining process. The highest Arsenic concentration in progeny fragments smaller than 0.038 mm reached up to 981.66 mg/kg after 5 min of attrition. Optimal dosage of collector ($C_5H_{11}OCS_2K$) and modifier ($Na_2S$ and $CuSO_4$) in froth flotation process for the selective separation of the chipped progeny particles from the parent fragments were determined both as 200 g/ton. Arsenic removal efficiency in froth flotation process was 38.47% and it was increased to 72.74% in additional flotation process, scavenging. Average arsenic concentration after overall process - wet sieving, attrition and froth flotation - was estimated to 16.45 mg/kg.

이 논문은 실험실 규모의 표면분쇄와 부유선별을 이용하여 비소로 오염된 중국 농경지 토양을 처리하기 위한 분쇄시간의 변화 및 $C_5H_{11}OCS_2K$, $Na_2S$$CuSO_4$의 사용량 변화에 대한 평가를 제시한다. 현장시료는 비소농도 76.51 mg/kg으로 한국과 중국의 기준치를 모두 초과하였고, 토양시료 내 비소화합물의 형태는 단계추출법에 의해 '잔류상'이 지배적인 것으로 나타났다(80% 이상). 또한 X-선 회절분석을 통하여 밝혀진 비소성분은 FeAsS, $As_4O_6$, $As_2O_5$ 화합물형태로 존재하는 것으로 확인되었다. 표면분쇄공정에 의해 원시료로부터 탈리된 입자의 비소농도는 분쇄경과시간 5분경 최대치에 달했으며, 이때의 농도는 981.66 mg/kg를 나타냈다. 비소함량이 높은 분쇄입자를 원시료로부터 선택적으로 분리하기 위해 부유선별공정에 사용된 $C_5H_{11}OCS_2K$, $Na_2S$$CuSO_4$의 최적 주입량은 각각 200 g/ton으로 결정되었고, 추가로 수행된 2차 부유선별인 청소부선을 통해서 침강물에서의 최대 비소제거 효율은 72.74%까지 증가하였다. 표면분쇄와 포말부선공정을 조합하여 처리된 정화토양의 입도는 >2, 0.075-2 mm와 <0.038 mm이었고, 이 정화토양의 중량분율은 각각 1.76, 18.00, 64.44 wt% 그리고, 최종정화산물의 평균 비소농도는 16.45 mg/kg로 산출되었다.

Keywords

References

  1. Zhang, J. H., Yang, M. H. and Xu, Y. N., "Analysis on impaction of heavy metal abundance in fluvial sediment of gold mining district," J. Gold, 29(1), 49-51(2008).
  2. Chen, G. G., Liang, X. H. and Zhou, G. H., "Grade division method for soil geochemical contamination and its application," J. Geol. China, 38(6), 1631-1639(2011).
  3. Kim, E. J. and Baek, K. T., "Effect of metal speciations on heavy metal removal from contaminated soils," J. Korean Soc. Environ. Anal., 17(2), 88-94(2014).
  4. Moon, D. H., Lee, J. R., Wazne, M. and Park, J. H. "Assessment of soil washing for Zn contaminated soils using various washing solutions. J. Ind. Eng. Chem., 18(2), 822-825(2012). https://doi.org/10.1016/j.jiec.2011.11.137
  5. Kim, J. D., "Extraction characteristics of heavy metals for soil washing of mine tailing-contaminated soil according to particle size distribution," J. Korean Ind. Eng. Chem., 19(1), 98-104(2008).
  6. Francioli, D. M., "Effect of operation variables on ball milling," Escola Politecnica, Universidade Federal do Rio de Janeiro, pp. 10-12(2015).
  7. Shin, Y. J., Park, S. M., Yoo, J. C., Jeon, C. S., Lee, S. W. and Baek, K. T., "A new approach for remediation of As-contaminated soil: ball mill-based technique," Environ. Sci. Pollut. Res., 23(4), 3963-3970(2016). https://doi.org/10.1007/s11356-015-5896-2
  8. Vanthuyne, M. and Maes, A., "The removal of heavy metals from contaminated soil by a combination of sulfidisation and flotation," Sci. Total Environ.. 290(1-3), 69-80(2002). https://doi.org/10.1016/S0048-9697(01)01064-6
  9. Choi, J. H., Lee E. S., Choi, S. Q., Lee, S. W., Han, Y. S. and Kim, H. J., "Arsenic removal from contaminated soils for recycling via oil agglomerate flotation," Chem. Eng. J., 285, 207-217(2016). https://doi.org/10.1016/j.cej.2015.09.105
  10. Smedley, P. L. and Kinniburgh, D. G., "A review of the source, behaviour and distribution of arsenic in natural water," Appl. Geochem., 17(5), 517-568(2002). https://doi.org/10.1016/S0883-2927(02)00018-5
  11. Lee, W. C., Jeong, J. O., Kim, J. Y. and Kim, S. O., "Characterization of Arsenic Immobilization in the Myungbong Mine Tailing," Econ. Environ. Geol., 43(2), 137-148(2010).
  12. Wang, X. H. and Frossberg, K. S. E., "Mechanisms of pyrite flotation with xanthate," Int. J. Miner. Proc., 33(1-4), 275-290(1991). https://doi.org/10.1016/0301-7516(91)90058-Q
  13. Richardson, P. E., Stout III, J. V., Proctor, C. L. and Walker, G. W., "Electrochemical flotation of sulfides: Chalcocite-ethylxanthate interactions," Int. J. Miner. Proc., 12(1-3), 73-93(1984). https://doi.org/10.1016/0301-7516(84)90023-1
  14. Herrera-Urbina, R., Sotillo, F. J. and Fuerstenau, D. W., "Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena," Int. J. Miner. Proc., 55(3), 766-771(1999).
  15. Irannajad, M., Ejtemaei, M. and Gharabaghi, M., "The effect of reagents on selective flotation of smithsonite-calcite-quartz," Miner. Eng., 22(9-10), 766-771(2009). https://doi.org/10.1016/j.mineng.2009.01.012
  16. Finkelstein, N. P.. "The activation of sulphide minerals for flotation: a review," Int. J. Miner. Proc., 52(2-3), 81-120(1997). https://doi.org/10.1016/S0301-7516(97)00067-7
  17. Chandra, A. P. and Gerson, A. R., "A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite," Adv. Colloid Interf., 145(1-2), 97-110(2009). https://doi.org/10.1016/j.cis.2008.09.001
  18. Harris, G. H. and Jia, R., "An improved class of flotation frothers," Int. J. Miner. Proc., 58(1-4), 35-43(2000). https://doi.org/10.1016/S0301-7516(99)00070-8
  19. Harvey, P. A., Nguyen, A. V., Jameson, G. J. and Evans, G. M., "Influence of sodium dodecyl sulphate and Dowfroth frothers on froth stability," Miner. Eng., 18(3), 311-315(2005). https://doi.org/10.1016/j.mineng.2004.06.011
  20. Hyundai E&C, "Development of optimized technology for remediation of soils contaminated with heavy metals by using soil washing process," Research Report(173-092-014), Korea Ministry of Environment, pp. 98-101(2012).
  21. Bond, F. C., "General aspects of comminution: history," Mineral processing handbook, Society of Mining Engineers, pp. 1-4(1985).
  22. Valdivieso, A. L., Escamilla, C. O., Song, S., Baez, I. L. and Martinez, I. G., "Adsorption of isopropyl xanthate ions onto arsenopyrite and its effect on flotation," Int. J. Miner. Proc., 69, 175-184(2003). https://doi.org/10.1016/S0301-7516(02)00121-7
  23. Lee, E. S., "Development of a flotation process for arsenic removal from contaminated soils," Thesis of master degree, Dep. Miner. Res. Ene. Eng., Chonbuk Nat. Univ. pp. 26-27(2015).
  24. Garip, F. and Ozdag, H., "The adsorption of potassium ethyl xanthate on pyrite and effect of Na2S on the concentration of xanthate ion in the potassium ethyl xanthate solution," Int. J. Miner. Proc., 55, 129-137(1998) https://doi.org/10.1016/S0301-7516(98)00015-5
  25. Wang, X. H., Forssberg, K. S. E. and Bolin, N. J., "I. The stability of iron-xanthates," Thermodynamic calculations on iron-containing sulphide mineral flotation systems, Int. J. Miner. Proc., 27, 1-19(1989). https://doi.org/10.1016/0301-7516(89)90002-1
  26. Choi, J. H., Park, K. Y., Hong, J. S., Park, H. H. and Kim, H. J., "Arsenic removal from mine tailings for recycling via flotation," Mat. Trans., 54(12), 2291-2296(2013). https://doi.org/10.2320/matertrans.M2013285