DOI QR코드

DOI QR Code

Assessment of Impact-echo Method for Cavity Detection in Dorsal Side of Sewer Pipe

하수관거 배면 공동 탐지를 위한 충격반향법의 적용성 평가

  • Song, Seokmin (Dept. of Civil and Env. Engr., Hanyang Univ.) ;
  • Kim, Hansup (Dept. of Civil and Env. Engr., Hanyang Univ.) ;
  • Park, Duhee (Dept. of Civil and Env. Engr., Hanyang Univ.) ;
  • Kang, Jaemo (Dept. of Civil and Env. Engr., Hanyang Univ.) ;
  • Choi, Changho (Korea Institute of Civil Engrg. and Building Technology)
  • 송석민 (한양대학교 건설환경공학과) ;
  • 김한섭 (한양대학교 건설환경공학과) ;
  • 박두희 (한양대학교 건설환경공학과) ;
  • 강재모 (한양대학교 건설환경공학과) ;
  • 최창호 (한국건설기술연구원 지반연구소)
  • Received : 2015.12.10
  • Accepted : 2016.08.02
  • Published : 2016.08.31

Abstract

The leakage of water under sewer pipelines is one of main sources of sinkholes in urban areas. We performed laboratory model tests to investigate the presence of cavities using impact-echo method, which is a nondestructive test method. To simulate a concrete sewer pipe, a thin concrete plate was built and placed over container filled with sand. The cavity was modeled as an extruded polystyrene foam box. Two sets of tests were performed, one over sand and the other on cavity. A new impact device was developed to apply a consistent high frequency impact load on the concrete plate, thereby increasing the reliability of the test procedure. The frequency and transient characteristics of the measured reflected waveforms were analyzed via fast Fourier transform and short time Fourier spectrum. It was shown that the shapes of Fourier spectra are very similar to one another, and therefore cannot be used to predict the presence of cavity. A new index, termed resonance duration, is defined to record the time of vibration exceeding a prescribed intensity. The results showed that the resonance duration is a more effective parameter for predicting the presence of a cavity. A value of the resonance period was proposed to estimate the presence of cavity. Further studies using various soil types and field tests are warranted to validate the proposed approach.

싱크홀 발생의 주요 원인인 하수관거 배면의 공동 탐지를 위해 비파괴검사 방법 중 하나인 충격반향법을 적용한 실내 모형 실험을 수행하였다. 콘크리트 하수관의 모의를 위해 얇은 두께의 콘크리트 평판 시험체를 제작하였고 주변지반은 모래로 조성하였으며 공동의 모사를 위해 스티로폼 박스를 모래에 매립하였다. 콘크리트 판 배면이 공동인 경우와 완전히 모래에 밀착된 경우로 나누어 실험이 진행되었으며 일정한 타격 강도의 유지를 위해 새롭게 제작된 타격 장치를 사용하여 획득 자료의 신뢰성을 높였다. 측정된 반사파는 고속 푸리에 변환과 국소 푸리에 변환을 사용하여 주파수 특성 및 시간 특성을 분석하였다. 그 결과, 푸리에 스펙트럼의 형상으로는 공동의 유무를 판별할 수 없는 것으로 나타났다. 본 연구에서는 공진 시간이라고 명한 새로운 지표를 제안하였다. 이는 공진 주파수가 일정 강도를 초과하는 지속 시간으로 정의하였다. 공진 시간은 공동의 유무를 효과적으로 예측하는 것으로 나타났다. 나아가 공동유무를 구분할 수 있는 공진 시간을 제시하였다. 실제 현장 조건에서의 검증과 보다 광범위한 적용성의 확보를 위해 다양한 지반 조건에 대한 추가 실험과 실제 하수관에 대한 현장 실험 등을 진행할 예정이다.

Keywords

References

  1. BAI (2015), Audit Report - Road and Construction Projects Status in Seoul, Board of Audit and Inspection of Korea, pp.95-111.
  2. Aggelis, D.G., Shiotani, T., and Kasai, K. (2008), "Evaluation of Grouting in Tunnel Lining using Impact-echo", Tunnelling and Underground Space Technology, Vol.23, No.6, pp.629-637. https://doi.org/10.1016/j.tust.2007.12.001
  3. Colla, C. and Lausch, R. (2003), "Influence of Source Frequency on Impact-echo Data Quality for Testing Concrete Structures", Ndt & E International, Vol.36, No.4, pp.203-213. https://doi.org/10.1016/S0963-8695(02)00062-2
  4. Liu, Z. and Kleiner, Y. (2013), "State of the Art Review of Inspection Technologies for Condition Assessment of Water Pipes", Measurement, Vol.46, No.1, pp.1-15. https://doi.org/10.1016/j.measurement.2012.05.032
  5. Song, K.I. and Cho, G.C. (2009), "Bonding State Evaluation of Tunnel Shotcrete Applied onto Hard Rocks using the Impact-echo Method", Ndt & E International, Vol.42, No.6, pp.487-500. https://doi.org/10.1016/j.ndteint.2009.02.007
  6. MATLAB R2015b (2015), The Math Works Inc., Natick, Massachusetts.
  7. Carino, N.J. (2001), "The Impact-echo Method: An Overview", Proceedings of the 2001 Structures Congress & Exposition, pp. 21-23.
  8. Carino, N.J., Sansalone, M., and Hsu, N.N. (1986), "Flaw Detection in Concrete by Frequency Spectrum Analysis of Impact-echo Waveforms", International Advances in Nondestructive Testing, Vol.12, pp.117-146.
  9. Gibson, A. and Popovics, J.S. (2005), "Lamb Wave Basis for Impactecho Method Analysis", Journal of Engineering mechanics, Vol. 131, No.4, pp.438-443. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(438)
  10. Lin, Y. and Sansalone, M. (1992a), "Detecting Flaws in Concrete Beams and Columns using the Impact-echo Method", ACI Materials Journal, Vol.89, No.4, pp.394-405.
  11. Lin, Y. and Sansalone, M. (1992b), "Transient Response of Thick Circular and Square Bars Subjected to Transverse Elastic Impact", The Journal of the Acoustical Society of America, Vol.91, No.2, pp.885-893. https://doi.org/10.1121/1.402494
  12. Lin, Y. and Sansalone, M. (1992c), "Transient Response of Thick Rectangular Bars Subjected to Transverse Elastic Impact", The Journal of the Acoustical Society of America, Vol.91, No.5, pp.2674-2685. https://doi.org/10.1121/1.402975
  13. Ryden, N., Aurell, O., Nilsson, P., and Hartlen, J. (2013), "Impact Echo Q-Factor Measurements Towards Non-Destructive Quality Control of the Backfill in Segmental Lined Tunnels", Nondestructive Testing of Materials and Structures: Springer, pp.915-919.
  14. Sansalone, M. and Carino, N. (1986), Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves', NBSIR 86-3452, National Bureau of Standards, Washington, DC, PB 87-10444/AS (National Technical Information Service, Springfield, MA, 1986).

Cited by

  1. Analysis method of impact echo based on variational mode decomposition vol.20, pp.7, 2018, https://doi.org/10.21595/jve.2018.18912