DOI QR코드

DOI QR Code

Nonlinear Earthquake Response Analysis of a Soil-Structure Interaction System Subjected to a Three-Directional Ground Motion

3축 방향 지반운동이 작용하는 지반-구조물 상호작용계의 비선형 지진응답 해석

  • Lee, Jin Ho (High-speed Railroad Systems Research Center, Korea Railroad Research Institute) ;
  • Kim, Jae Kwan (Department of Civil & Environmental Engineering, Seoul National University) ;
  • Kim, Jung Han (Integrated Safety Assessment Division, Korea Atomic Energy Research Institute)
  • 이진호 (한국철도기술연구원 고속철도연구본부) ;
  • 김재관 (서울대학교 건설환경공학부) ;
  • 김정한 (한국원자력연구원 종합안전평가부)
  • Received : 2016.06.16
  • Accepted : 2016.08.06
  • Published : 2016.08.31

Abstract

In this study, nonlinear earthquake responses of a soil-structure interaction(SSI) system which is subjected to a three-directional ground motion are examined. The structure and the near-field region of soil, where the geometry is irregular, the material properties are heterogeneous, and nonlinear dynamic responses are expected, are modeled by nonlinear finite elements. On the other hand, the infinite far-field region of soil, which has a regular geometry and homogeneous material properties and dynamic responses is assumed linearly elastic, is represented by three-dimensional perfectly matched discrete layers which can radiate elastic waves into infinity efficiently. Nonlinear earthquake responses of the system subjected to a three-directional ground motion are calculated with the numerical model. It is observed that the dynamic responses of a SSI system to a three-directional motion have a predominant direction according to the characteristics of the ground motion. The responses must be evaluated using precise analysis methods which can consider nonlinear behaviors of the system accurately. The the method employed in this study can be applied easily to boundary nonlinear problems as well as material nonlinear problems.

이 연구에서는 3축 방향 지반운동이 작용하는 지반-구조물 상호작용계의 비선형 지진응답 해석을 수행한다. 비선형 거동이 예상되는 구조물과 지반의 근역은 비선형 유한요소에 의해 모형을 구성한다. 기하학적 형상과 재료 성질이 균일하고 선형 거동을 가정하는 원역지반은 무한 영역으로의 에너지 방사를 정확히 고려할 수 있는 3차원 perfectly matched discrete layer에 의해 수치 모형을 구성한다. 이와 같은 지반-구조물 상호작용계의 수치모형을 사용하여 3축 방향 지반운동이 작용하는 비선형 지진-구조물 상호작용계의 지진응답해석을 수행한다. 3축 방향 지반운동이 작용하는 경우에는 입력 지반운동의 특성에 따라 시스템의 응답이 우세하게 발현되는 방향이 존재하고 그 수준 또한 정밀한 지진응답해석을 통해 산정하여야 한다. 이 연구의 해석기법은 구조물과 지반의 재료 비선형 거동, 기초와 지반 경계면에서의 경계 비선형 거동 등 다양한 비선형 지반-구조물 상호작용 해석에 확장 적용할 수 있을 것이다.

Keywords

References

  1. ABAQUS (2011) ABAQUS Documentation, Dassault Systems, Providence, RI, USA.
  2. American Society of Civil Engineers (2000) Seismic Analysis of Safety-Related Nuclear Structures and Commentary, ASCE 4-98.
  3. Astley, R.J. (2000) Infinite Elements for Wave Propagation: a Review of Current Formulations and an Assessment of Accuracy, Int. J. Num. Methods Eng., 49, pp.951-976. https://doi.org/10.1002/1097-0207(20001110)49:7<951::AID-NME989>3.0.CO;2-T
  4. Asvadurov, S., Druskin, V., Guddati, M.N., Knizhnerman, L. (2003) On Optimal Finite-Differnce Approximation of PML, SIAM J. Num. Anal., 41, pp.287-305. https://doi.org/10.1137/S0036142901391451
  5. Basu, U., Chopra, A.K. (2003) Perfectly Matched Layers for Time-Harmonic Elastodynamics of Unbounded Domains: Theory and Fnite-element Implementation, Comput. Methods Appl. Mech. & Eng., 192, pp.1337-1375. https://doi.org/10.1016/S0045-7825(02)00642-4
  6. Basu, U., Chopra, A.K. (2004) Perfectly Matched Layers for Transient Elastodynamics of Unbounded Domains, Int. J. Num. Methods Eng., 59, pp.1039-1074. https://doi.org/10.1002/nme.896
  7. Beskos, D.E. (1987) Boundary Element Methods in Dynamic Analysis, Appl. Mech. Rev., 40, pp.1-23. https://doi.org/10.1115/1.3149529
  8. Beskos, D.E. (1997) Boundary Element Methods in Dynamic Analysis: Part II (1986-1996), Appl. Mech. Rev., 50, pp.149-197. https://doi.org/10.1115/1.3101695
  9. Building Seismic Safety Council (2003) NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, FEMA 451, National Institute of Building Sciences.
  10. Building Seismic Safety Council (2006) NEHRP Recommended Provisions: Design Examples, FEMA 451, National Institute of Building Sciences.
  11. Gasparini, D.A., Vanmarcke, E.H. (1976) Simulated Earthquake Motions Compatible with Prescribed Response Spectra, R76-4, Dept. of Civil Engineering, Massachusetts Inst. of Technology, Cambridge.
  12. Givoli, D. (2004) High-order Local Non-reflecting Boundary Conditions: A Review, Wave Motion, 39, pp.319-326. https://doi.org/10.1016/j.wavemoti.2003.12.004
  13. Guddati, M.N. (2006) Arbitrarily Wide-Angle Wave Euations for Complex Media, Comput. Methods Appl. Mech. &. Eng., 195, pp.65-93. https://doi.org/10.1016/j.cma.2005.01.006
  14. Guddati, M.N., Tassoulas, J.L. (2000) Continuedfraction Absorbing Boundary Conditions for the Wave Equation, J. Comput. Acoust., 8, pp.139-156. https://doi.org/10.1142/S0218396X00000091
  15. Kausel, E. (1974) Forced Vibrations of Circular Foundations on Layered Media, Research Report R74-11, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
  16. Lee, J.H., Kim, J.K., Kim, J.H. (2014) Nonlinear Analysis of Soil-Structure Interaction using Perfectly Matched Discrete Layers, Comput. & Struct., 142, pp.28-44. https://doi.org/10.1016/j.compstruc.2014.06.002
  17. Lee, J.H., Kim, J.H., Kim, J.K. (2016) Perfectly Matched Discrete Layers for Three-Dimensional Nonlinear Soil-structure Interaction Analysis, Comput. & Struct., 165, pp.34-47. https://doi.org/10.1016/j.compstruc.2015.12.004
  18. Mayer, R.L., Naeim. F. (2001) Design of Structures with Seismic Isolation, in: Naeim, F. (Eds), The Seism. Des. Handbook, 2nd edition, Springer, pp.723-755.
  19. Rabinovich, D., Givioli, D., Becache, E. (2010) Comparison of High-order Absorbing Boundary Conditions and Perfectly Matched Layers in the Frequency Domain, Int. J. Num. Methods Biomed. Eng., 26, pp.1351-1369. https://doi.org/10.1002/cnm.1394
  20. Roesset, J.M., Tassoulas, J.L. (1982) Nonlinear Soil Structure Interaction: An Overview, in Datta, S.K. (Eds.), Earthquake Ground Motion and Its Effects on Structures, ASME, New York, pp. 41-57.
  21. Seo, C.-G., Yun, C.-B., Kim, J.-M. (2007) Cuboidal Infinite Elements for Soil-Structure interaction Analysis in Multi-Layered Half-space, J. Comput. Struct. Eng. Inst. Korea, 20, pp.39-50.
  22. U.S. Nuclear Regulatory Commission (1973) Regulatory Guide 1.60, Revision 1.