DOI QR코드

DOI QR Code

Effect of Ti and Si Interlayer Materials on the Joining of SiC Ceramics

  • Jung, Yang-Il (LWR Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Park, Jung-Hwan (LWR Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Kim, Hyun-Gil (LWR Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Park, Dong-Jun (LWR Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Park, Jeong-Yong (LWR Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Kim, Weon-Ju (LWR Fuel Technology Division, Korea Atomic Energy Research Institute)
  • Received : 2015.11.02
  • Accepted : 2016.03.02
  • Published : 2016.08.25

Abstract

SiC-based ceramic composites are currently being considered for use in fuel cladding tubes in light-water reactors. The joining of SiC ceramics in a hermetic seal is required for the development of ceramic-based fuel cladding tubes. In this study, SiC monoliths were diffusion bonded using a Ti foil interlayer and additional Si powder. In the joining process, a very low uniaxial pressure of ~0.1 MPa was applied, so the process is applicable for joining thin-walled long tubes. The joining strength depended strongly on the type of SiC material. Reaction-bonded SiC (RB-SiC) showed a higher joining strength than sintered SiC because the diffusion reaction of Si was promoted in the former. The joining strength of sintered SiC was increased by the addition of Si at the Ti interlayer to play the role of the free Si in RB-SiC. The maximum joint strength obtained under torsional stress was ~100 MPa. The joint interface consisted of $TiSi_2$, $Ti_3SiC_2$, and SiC phases formed by a diffusion reaction of Ti and Si.

Keywords

References

  1. L. Hallstadius, S. Johnson, E. Lahoda, Cladding for high performance fuel, Prog. Nucl. Energy 57 (2012) 71-76. https://doi.org/10.1016/j.pnucene.2011.10.008
  2. W.J. Kim, D. Kim, J.Y. Park, Fabrication and material issues for the application of SiC composites to LWR fuel cladding, Nucl. Eng. Technol. 45 (2013) 565-572. https://doi.org/10.5516/NET.07.2012.084
  3. D. Kim, H.G. Lee, J.Y. Park, W.J. Kim, Fabrication and measurement of hoop strength of SiC triplex tube for nuclear fuel cladding applications, J. Nucl. Mater. 458 (2015) 29-36. https://doi.org/10.1016/j.jnucmat.2014.11.117
  4. H.G. Kim, J.H. Yang, W.J. Kim, Y.H. Koo, Development status of accident-tolerant fuel for light water reactors in Korea, Nucl. Eng. Technol. 48 (2016) 1-15. https://doi.org/10.1016/j.net.2015.11.011
  5. J.M. Fernandez, A. Munoz, F.M. Varela-Feria, M. Singh, Interfacial and thermomechanical characterization of reaction formed joints in silicon carbide-based materials, J. Eur. Ceram. Soc. 20 (2000) 2641-2648. https://doi.org/10.1016/S0955-2219(00)00156-4
  6. P. Colombo, V. Sglavo, E. Pippel, J. Woltersdorf, Joining of reaction-bonded silicon carbide using a preceramic polymer, J. Mater. Sci. 33 (1998) 2405-2412. https://doi.org/10.1023/A:1004312109836
  7. S. Morozumi, M. Endo, M. Kikuchi, K. Hamajima, Bonding mechanism between silicon carbide and thin foils of reactive metals, J. Mater. Sci. 20 (1985) 3976-3982. https://doi.org/10.1007/BF00552387
  8. B.V. Cockeram, The diffusion bonding of silicon carbide and boron carbide using refractory metals, USDOE Contract No. DE-AC11-98PN38206, Bettis Atomic Power Laboratory, West Mifflin, PA, 1999.
  9. M.C. Halbig, M. Singh, H. Tsuda, Integration technologies for silicon carbide-based ceramics for micro-electro-mechanical systems-lean direct injector fuel injector applications, Int. J. Appl. Ceram. Technol. 9 (2012) 677-687. https://doi.org/10.1111/j.1744-7402.2012.02766.x
  10. Y.I. Jung, S.H. Kim, H.G. Kim, J.Y. Park, W.J. Kim, Microstructures of diffusion bonded SiC ceramics using Ti and Mo interlayers, J. Nucl. Mater. 441 (2013) 510-513. https://doi.org/10.1016/j.jnucmat.2013.07.008
  11. Y.I. Jung, H.G. Kim, I.H. Kim, J.Y. Park, W.J. Kim, Microstructures of laser bonded SiC ceramics with Zr interlayers, J. Nucl. Mater. 455 (2014) 586-590. https://doi.org/10.1016/j.jnucmat.2014.08.014
  12. S. Grasso, P. Tatarko, S. Rizzo, H. Porwal, C. Hu, Y. Katoh, M. Salvo, M.J. Reece, M. Ferraris, Joining of b-SiC by spark plasma sintering, J. Eur. Ceram. Soc. 34 (2014) 1681-1686. https://doi.org/10.1016/j.jeurceramsoc.2013.12.023
  13. T. Hinoki, N. Eiza, S.J. Son, K. Shimoda, J.K. Lee, A. Kohyama, Development of joining and coating technique for SiC and SiC/SiC composites utilizing NITE processing, Ceram. Eng. Sci. Proc. 26 (2005) 399-405.
  14. W. Lippmann, J. Knorr, R. Wolf, R. Rasper, H. Exner, A.M. Reinecke, M. Nieher, R. Schreiber, Laser joining of silicon carbide-a new technology for ultra-high temperature resistant joints, Nucl. Eng. Des. 231 (2004) 151-161. https://doi.org/10.1016/j.nucengdes.2004.03.002
  15. M. Ferraris, M. Salvo, V. Casalegno, S. Han, Y. Katoh, H.C. Jung, T. Hinoki, A. Kohyama, Joining of SiC-based materials for nuclear energy applications, J. Nucl. Mater. 417 (2011) 379-382. https://doi.org/10.1016/j.jnucmat.2010.12.160
  16. C.H. Henager Jr., Y. Shin, Y. Blum, L.A. Giannuzzi, B.W. Kempshall, S.M. Schwarz, Coatings and joining for SiC and SiC-composites for nuclear energy systems, J. Nucl. Mater. 367-370 (2007) 1139-1143. https://doi.org/10.1016/j.jnucmat.2007.03.189
  17. X. Zhou, Y.H. Han, X. Shen, S. Du, J. Lee, Q. Huang, Fast joining SiC ceramics with $Ti_3SiC_2$ tape film by electric field-assisted sintering technology, J. Nucl. Mater. 466 (2015) 322-327. https://doi.org/10.1016/j.jnucmat.2015.08.004
  18. B. Riccardi, C.A. Nannetti, T. Petrisor, J. Woltersdorf, E. Pippel, S. Libera, L. Pilloni, Issues of low activation brazing of $SiC_f$/SiC composites by using alloys without free silicon, J. Nucl. Mater. 329-333 (2004) 562-566. https://doi.org/10.1016/j.jnucmat.2004.04.118
  19. M. Herrmann, P. Meisel, W. Lippmann, A. Hurtado, Joining technology-a challenge for the use of SiC components in HTRs, Nucl. Eng. Des. (2016). Available from: http://dx.doi.org/10.1016/j.nucengdes.2015.12.022.
  20. Y. Katoh, L.L. Snead, T. Cheng, C. Shih, W.D. Lewis, T. Koyanagi, T. Hinoki, C.H. Henager Jr., M. Ferraris, Radiation-tolerant joining technologies for silicon carbide ceramics, J. Nucl. Mater. 448 (2014) 497-511. https://doi.org/10.1016/j.jnucmat.2013.10.002
  21. J. Li, D. Jiang, S. Tan, Microstructure and mechanical properties of in situ produced SiC/$TiSi_2$ nanocomposites, J. Eur. Ceram. Soc. 20 (2000) 227-233. https://doi.org/10.1016/S0955-2219(99)00157-0
  22. Y.I. Jung, D.J. Park, J.H. Park, J.Y. Park, H.G. Kim, Y.H. Koo, Effect of $TiSi_2$/$Ti_3SiC_2$ matrix phases in a reaction-bonded SiC on mechanical and high-temperature oxidation properties, J. Eur. Ceram. Soc. 36 (2016) 1343-1348. https://doi.org/10.1016/j.jeurceramsoc.2016.01.015
  23. C.H. Henager Jr., B.N. Nguyen, R.J. Kurtz, T.J. Roosendaal, B.A. Borlaug, M. Ferraris, A. Ventrella, Y. Katoh, Modeling and testing miniature torsion specimens for SiC joining development studies for fusion, J. Nucl. Mater. 466 (2015) 253-268. https://doi.org/10.1016/j.jnucmat.2015.07.044

Cited by

  1. Hydrothermal corrosion of silicon carbide joints without radiation vol.481, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2016.09.027
  2. Irradiation resistance of silicon carbide joint at light water reactor–relevant temperature vol.488, pp.None, 2017, https://doi.org/10.1016/j.jnucmat.2017.03.017
  3. Low Pressure Joining of SiCf/SiC Composites Using Ti3AlC2 or Ti3SiC2 MAX Phase Tape vol.54, pp.4, 2017, https://doi.org/10.4191/kcers.2017.54.4.08
  4. Zr-Cu alloy filler metal for brazing SiC ceramic vol.8, pp.46, 2016, https://doi.org/10.1039/c8ra05480k
  5. Effect of Thermal cycles and Dimensions of the Geometry on Residual stress of the Alumina-Kovar Joint vol.338, pp.None, 2016, https://doi.org/10.1088/1757-899x/338/1/012001
  6. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): Joining processes, joint strength, and interfacial behavior vol.8, pp.1, 2019, https://doi.org/10.1007/s40145-018-0297-x
  7. A review on the joining of SiC for high-temperature applications vol.57, pp.3, 2016, https://doi.org/10.1007/s43207-020-00021-4
  8. Investigation of interfacial reaction mechanism between SiC and Inconel 625 superalloy using thermodynamic calculation vol.41, pp.7, 2021, https://doi.org/10.1016/j.jeurceramsoc.2021.02.046