DOI QR코드

DOI QR Code

Poly(phenanthrenequinone)-Poly(acrylic acid) Composite as a Conductive Polymer Binder for Submicrometer-Sized Silicon Negative Electrodes

서브마이크로미터 크기의 실리콘 음극용 폴리페난트렌퀴논-폴리아크릴산 전도성 고분자 복합 바인더

  • Kim, Sang-Mo (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Byeongil (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Jae Gil (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Jeong Beom (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University) ;
  • Kim, Hyung-Tae (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Young Gyu (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Oh, Seung M. (Department of Chemical and Biological Engineering, Seoul National University)
  • 김상모 (서울대학교 화학생물공학부) ;
  • 이병일 (서울대학교 화학생물공학부) ;
  • 이재길 (서울대학교 화학생물공학부) ;
  • 이정범 (서울대학교 화학생물공학부) ;
  • 류지헌 (한국산업기술대학교 지식기술기반 에너지대학원) ;
  • 김형태 (서울대학교 화학생물공학부) ;
  • 김영규 (서울대학교 화학생물공학부) ;
  • 오승모 (서울대학교 화학생물공학부)
  • Received : 2016.06.02
  • Accepted : 2016.06.17
  • Published : 2016.08.31

Abstract

In order to improve performances of submicrometer-sized Si negative electrode which shows larger volumetric change than nano-sized Si, composite binders are introduced by blending between poly(phenanthrenequinone) (PPQ) conductive polymer binder and poly(acrylic acid) (PAA) having good adhesion strength due to its carboxyl functional group. Blending between PPQ and PAA shows an effect that the adhesion strength of the Si electrode with the composite conductive binder is greatly improved after blending and this makes its better stable cycle performance. Blending ratios between PPQ and PAA in this work are 2:1, 1:1, 1:2 (by weight) and the best capacity retention at 50th cycle is observed in the electrode with the blending ratio 2:1 (named QA21). This is because that PPQ plays a role of conductive carbon among the Si particles or between Si particles and Cu current collector and PAA binds effectively the particles and the current collector. According to this synergetic effect, the internal resistance of the Si electrode with the blending ratio 2:1 is the smallest value. In addition, the Si electrode with PPQ-PAA composite binder shows the better stable cycle performance than the electrode with conventional super-P conductive carbon (20 wt.%).

나노 크기에 비해 부피 변화가 상대적으로 더 큰 서브마이크로미터 크기의 실리콘 음극의 성능 향상을 위해 도전재 역할을 하는 3,6-poly(phenanthrenequinonone) (PPQ) 전도성 고분자 바인더와 카복시기를 가져 결착력이 좋은 poly(acrylic acid) (PAA)를 블렌딩 한 복합 바인더를 도입하였다. PAA를 PPQ와 블렌딩하여 전극을 제조했을 때 결착력이 월등히 증가하였고 충방전실험 결과 PPQ 바인더를 단독으로 사용한 전극보다 안정된 수명 특성을 나타냈다. PPQ와 PAA의 함량 비율을 2:1, 1:1, 1:2(무게비)로 하여 각 전극의 수명 특성을 비교했을 때, PPQ의 함량이 가장 큰 전극(2:1, QA21)이 50번째 사이클에서 가장 좋은 용량 유지율을 보였다. 이는 PPQ가 입자 간 또는 입자와 집전체 사이에서 도전재로서 존재하여 전자가 이동할 수 있는 통로를 제공해 주고 PAA가 적절한 결착력을 제공해주어 전극의 내부 저항이 가장 작았기 때문이다. PPQ-PAA 복합 바인더를 사용한 전극은 입자 형태의 도전재인 super-P를 전체 전극 무게 대비 20%를 첨가하여 제조한 전극보다도 더 안정적인 수명 특성을 나타내었다.

Keywords

References

  1. J. G. Lee, J. Kim, H. Park, J. B. Lee, J. H. Ryu, J. J. Kim and S. M. Oh, 'A Calculation Model to Assess Two Irreversible Capacities Evolved in Silicon Negative Electrodes', J. Electrochem. Soc., 162, A1579 (2015). https://doi.org/10.1149/2.0821508jes
  2. J. H. Ryu, J. W. Kim, Y.-E. Sung and S. M. Oh, 'Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries', Electrochem. Solid-State Lett., 7, A306 (2004). https://doi.org/10.1149/1.1792242
  3. X. N. Zhang, G. L. Pan, G. R. Li, J. Q. Qu and X. P. Gao, '$Si-Si_3N_4$ composites as anode materials for lithium ion batteries', Solid State Ionics, 178, 1107 (2007). https://doi.org/10.1016/j.ssi.2007.05.011
  4. P. Zuo and G. Yin, 'Si-Mn composite anodes for lithium ion batteries', J. Alloys Compd., 414, 265 (2006). https://doi.org/10.1016/j.jallcom.2005.07.026
  5. Z. Y. Zeng, J. P. Tu, Y. Z. Yang, J. Y. Xiang, X. H. Huang, F. Mao and M. Ma, 'Nanostructured Si/TiC composite anode for Li-ion batteries', Electrochim. Acta, 53, 2724 (2008). https://doi.org/10.1016/j.electacta.2007.09.006
  6. J.-H. Kim, H.-J. Sohn, H. Kim, G. Jeong and W. Choi, 'Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries', J. Power Sources, 170, 456 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.081
  7. K. W. Kim, J. G. Lee, H. Park, J. Kim, J. H. Ryu, Y.-U. Kim and S. M. Oh, 'Effect of Lithium Bis(oxalate)borate as an Electrolyte Additive on Carbon-coated SiO Negative Electrode', J. Korean Electrochem. Soc., 17, 49 (2014). https://doi.org/10.5229/JKES.2013.17.1.49
  8. K. W. Kim, H. Park, J. G. Lee, J. Kim, Y.-U. Kim, J. H. Ryu, J. J. Kim and S. M. Oh, 'Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries', Electrochim. Acta, 103, 226 (2013). https://doi.org/10.1016/j.electacta.2013.04.040
  9. T. Kim, S. Park and S. M. Oh, 'Solid-State NMR and Electrochemical Dilatometry Study on $Li^+$ Uptake/Extraction Mechanism in SiO Electrode', J. Electrochem. Soc., 154, A1112 (2007). https://doi.org/10.1149/1.2790282
  10. H. Kim, M. Seo, M.-H. Park and J. Cho, 'A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries', Angew. Chem.-Int. Edit., 49, 2146 (2010). https://doi.org/10.1002/anie.200906287
  11. H. Li, X. Huang, L. Chen, Z. Wu and Y. Liang, 'A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries', Electrochem. Solid-State Lett., 2, 547 (1999). https://doi.org/10.1149/1.1390899
  12. K. Peng, J. Jie, W. Zhang and S.-T. Lee, 'Silicon nanowires for rechargeable lithium-ion battery anodes', Appl. Phys. Lett., 93, 033105 (2008). https://doi.org/10.1063/1.2929373
  13. B. Laik, L. Eude, J.-P. Pereira-Ramos, C. S. Cojocaru, D. Pribat and E. Rouviere, 'Silicon nanowires as negative electrode for lithium-ion microbatteries', Electrochim. Acta, 53, 5528 (2008). https://doi.org/10.1016/j.electacta.2008.02.114
  14. M.-H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, 'Silicon Nanotube Battery Anodes', Nano Lett., 9, 3844 (2009). https://doi.org/10.1021/nl902058c
  15. T. Song, J. Xia, J.-H. Lee, D. H. Lee, M.-S. Kwon, J.-M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K.-C. Hwang, J. A. Rogers and U. Paik, 'Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries', Nano Lett., 10, 1710 (2010). https://doi.org/10.1021/nl100086e
  16. D. Lin, Z. Lu, P.-C. Hsu, H. R. Lee, N. Liu, J. Zhao, H. Wang, C. Liu and Y. Cui, 'A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries', Energy Environ. Sci., 8, 2371 (2015). https://doi.org/10.1039/C5EE01363A
  17. W.-R. Liu, Z.-Z. Guo, W.-S. Young, D.-T. Shieh, H.-C. Wu, M.-H. Yang and N.-L. Wu, 'Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive', J. Power Sources, 140, 139 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.032
  18. S.-M. Kim, M. H. Kim, S. Y. Choi, J. G. Lee, J. Jang, J. B. Lee, J. H. Ryu, S. S. Hwang, J.-H. Park, K. Shin, Y. G. Kim and S. M. Oh, 'Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes', Energy Environ. Sci., 8, 1538 (2015). https://doi.org/10.1039/C5EE00472A
  19. S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui and K. Konno, 'Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries', J. Phys. Chem. C, 115, 13487 (2011). https://doi.org/10.1021/jp201691g
  20. J. S. Bridel, T. Azais, M. Morcrette, J. M. Tarascon and D. Larcher, 'Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries', Chem. Mater., 22, 1229 (2010). https://doi.org/10.1021/cm902688w
  21. Z.-J. Han, N. Yabuuchi, K. Shimomura, M. Murase, H. Yui and S. Komaba, 'High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries', Energy Environ. Sci., 5, 9014 (2012). https://doi.org/10.1039/c2ee22292b
  22. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov and G. Yushin, 'Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid', ACS Appl. Mater. Interfaces, 2, 3004 (2010). https://doi.org/10.1021/am100871y
  23. M. N. Obrovac and L. Christensen, 'Structural Changes in Silicon Anodes during Lithium Insertion/Extraction', Electrochem. Solid-State Lett., 7, A93 (2004). https://doi.org/10.1149/1.1652421
  24. M. N. Obrovac and L. J. Krause, 'Reversible Cycling of Crystalline Silicon Powder', J. Electrochem. Soc., 154, A103 (2007). https://doi.org/10.1149/1.2402112