DOI QR코드

DOI QR Code

Cable-free Seismic Acquisition System

무선 탄성파 탐사 시스템

  • 이동훈 (한국지질자원연구원 석유해저연구본부) ;
  • 김병엽 (한국지질자원연구원 석유해저연구본부) ;
  • 장성형 (한국지질자원연구원 석유해저연구본부)
  • Received : 2016.08.16
  • Accepted : 2016.08.30
  • Published : 2016.08.31

Abstract

Cable-free seismic technology is to acquire seismic data with independent receivers which are not connected by cables. This is an effective method for survey designs with less topographical conditions. With technology advancement for cable-free receivers, reliable data quality, easy deployment, and picking up the receivers, the cable-free technology has begun to apply to land seismic acquisition. In this study we introduced a cable-free seismic system and its equipment. We tried to build up the cable-free seismic technology through the field application. In the seismic tomography field applications, the seismic signals of the cable-free receiver and cabled receiver with the same distance from the source show the same phase in early stage. The difference of the first arrival times between two signals is less than 0.4 ms, which could be accepted. In the field application for seismic reflection exploration, we acquired shot gathers with different source depth and dynamite charge. The shot gathers from cable-free and cabled system are similar to each other. With an efficient method for receiver deployment and survey design, the application of the cable-free technology will increase.

무선 탄성파 탐사 기술은 각 노드들이 케이블로 연결되지 않은 독립적인 수진기를 활용하여 탄성파 자료를 취득하는 것을 말한다. 이 기술은 지형조건에 영향을 적게 받아 다양한 측선설계를 적용할 수 있다. 또한 수진기 설치와 수거가 간편하고 무선 수진기 관련 장비기술 발전으로 자료품질도 양호하여 최근 육상 석유탐사 자료취득에 활용되기 시작하였다. 여기에서는 무선 탄성파 탐사 시스템과 시스템을 구성하는 장비의 특성을 살펴보고 현장적용 실험을 통해 무선탄성파 탐사 기술을 소개하고자 하였다. 탄성파 토모그래피 현장적용 실험에서 음원으로부터 같은 거리에 있는 무선 수진기와 유선 수진기에 기록된 탄성파 신호음을 비교해보면 초기 위상이 일치하고 초동 차이가 0.4 ms 정도로 두 수진기에서 신호음이 거의 일치함을 알 수 있었다. 무선 탄성파 탐사 기술을 이용한 반사파 탐사 현장적용 실험에서는 발파공 깊이와 화약량에 따른 시험발파를 수행하고 음원모음을 취득하여 유선 탄성파 탐사에 의한 음원모음과 비교하여 유사한 결과를 확인하였다. 무선 탄성파 기술은 수진기 설치의 간편성, 탐사 측선 설계의 용이성으로 인하여 그 활용 가능성이 증가할 것으로 여겨진다.

Keywords

References

  1. Crice, D., 2014, A cable-free land seismic system that acquires data in real time, First break, 32, 97-100.
  2. FairFieldNodal, 2014, ZSystems ZLand 1C and 3C Node User Manual, 235.6049.0005.
  3. Freed, D., 2008, Cable-free nodes: The next generation land seismic system, The Leading Edge, 27, 878-881. https://doi.org/10.1190/1.2954027
  4. Gharibi, M., Killin, K., McGill, D., Henderson, W. B., and Retallick, T., 2012, Full 3D acquisition and modelling with the quantec 3d system-the hidden hill deposit case study, ASEG Extended Abstracts 2012: 22nd Geophysical Conference: 1-6.
  5. Grechka, V., Pech, A., and Tsvankin, I., 2005, Parameter estimation in orthorhombic media using multicomponent wide-azimuth reflection data, Geophysics, 70, D1-D8. https://doi.org/10.1190/1.1897026
  6. Jeong, C., and Suh, J., 2006, Seismic first arrival time computation 3D inhomogeneous tilted transversely isotropic media, Jigu-Mulli-wa-Mulli-Tamsa, 9, 241-249.
  7. Heath, R. G., 2008, Trends in land seismic instrumentation, The Leading Edge, 27, 872-877. https://doi.org/10.1190/1.2954026
  8. Kim, J., Matsuoka, T., and Xue, Z., 2011, Monitoring and detecting $CO_2$ injected into water-saturated sandstone with joint seismic and resistivity measurements, Jigu-Mulli-wa-Mulli-Tamsa, 14, 58-68.
  9. Lansley, M., 2013, Shifting paradigms in land data acquisition, First break, 31, 73-77.
  10. Mahmoudian, F., Margrave, G. F., Wong, J., and Henley, D. C., 2015, Azimuthal amplitude variation with offset analysis of physical modeling data acquired over an azimuthally anisotropic medium, Geophysics, 80, C21-C35. https://doi.org/10.1190/geo2014-0070.1
  11. Moon, Y. S., Ha, H. S., Lim, H., and Ko, G. B., 2006, Field application of 3D seismic travel-time tomography, KSEG Joint Symposium, 233-237.
  12. Naghizadeh, M., 2015, Double-weave 3D seismic acquisition -Part 2: Seismic modeling and subsurface fold analyses, Geophysics, 80, WD163-WD173 https://doi.org/10.1190/geo2015-0162.1
  13. Ritchie, N., Southeast Asian Exploration (SAE): a cable-less seismic first, http://energystream.co.nz/community/meet-thepeople-in-the-industry/southeast-asian-exploration-sae.
  14. Sanchis, C., and Elboth, T., 2014, Multicomponent streamer noise characteristics and denoising, SEG Technical Program Expanded Abstracts, 4183-4187.
  15. Savazzi, S., and Spagnolini, U., 2008, Wireless geophone networks for high-density land acquisition: Technologies and future potential, The Leading Edge, 27, 882-886. https://doi.org/10.1190/1.2954028
  16. SEG technical standards committee, 1995, Shell processing support format for land 3D surveys, Geophysics, 60, 596-603. https://doi.org/10.1190/1.1443799
  17. Stammeijer, J. G. F., and Hatchelll, P. J., 2014, Standards in 4D feasibility and interpretation, The Leading Edge, 33, 34-140. https://doi.org/10.1190/tle33010034.1
  18. Swanston, A., M., Mathias, M. D., and Barker, C., 2011, Wideazimuth TTI imaging at Tahiti: Reducing structural uncertainty of a major deepwater subsalt field, Geophysics, 76, WB67-WB78. https://doi.org/10.1190/geo2010-0393.1
  19. Yates, M., and Adiletta, S., 2013, Going nodal-Regional 3D seismic acquisition in Cook Inlet, Alaska, The Leading Edge, 32, 538-544. https://doi.org/10.1190/tle32050538.1
  20. Yin, Z., Ayzenberg, M., MacBeth, C., Feng, T., and Chassagne, R., 2015, Enhancement of dynamic reservoir interpretation by correlating multiple 4D seismic monitors to well behavior, Interpretation, 3, SP35-SP52. https://doi.org/10.1190/INT-2014-0194.1

Cited by

  1. Patent Trend and Characteristics of Major Companies in the Field of Seismic Nodal System vol.55, pp.6, 2018, https://doi.org/10.32390/ksmer.2018.55.6.635