DOI QR코드

DOI QR Code

Architecture and Transport Properties of Membranes out of Graphene

그래핀에 기초한 막의 구조와 물질 전달 성질 개관

  • Buchheim, Jakob (Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Eidgenossische Technische Hochschule (ETH) Zurich) ;
  • Wyss, Roman M. (Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Eidgenossische Technische Hochschule (ETH) Zurich) ;
  • Kim, Chang-Min (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Deng, Mengmeng (Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Eidgenossische Technische Hochschule (ETH) Zurich) ;
  • Park, Hyung Gyu (Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Eidgenossische Technische Hochschule (ETH) Zurich)
  • 야콥 부크하임 (취리히 연방 공과대학 기계공정공학과) ;
  • 로만 비스 (취리히 연방 공과대학 기계공정공학과) ;
  • 김창민 (광주과학기술원 지구환경공학부) ;
  • 등명명 (취리히 연방 공과대학 기계공정공학과) ;
  • 박형규 (취리히 연방 공과대학 기계공정공학과)
  • Received : 2016.08.22
  • Accepted : 2016.08.24
  • Published : 2016.08.31

Abstract

Two-dimensional materials offer unique characteristics for membrane applications to water technology. With its atomic thickness, availability and stackability, graphene in particular is attracting attention in the research and industrial communities. Here, we present a brief overview of the recent research activities in this rising topic with bringing two membrane architecture into focus. Pristine graphene in single- and polycrystallinity poses a unique diffusion barrier property for most of chemical species at broad ambient conditions. If well designed and controlled, physical and chemical perforation can turn this barrier layer to a thinnest feasible membrane that permits ultimate permeation at given pore sizes. For subcontinuum pores, both molecular dynamics simulations and experiments predict potential salt rejection to envisage a seawater desalination application. Another novel membrane architecture is a stack of individual layers of 2D materials. When graphene-based platelets are chemically modified and stacked, the interplanar spacing forms a narrow transport pathway capable of separation of solvated ions from pure water. Bearing unbeknownst permeance and selectivity, both membrane architecture - ultrathin porous graphene and stacked platelets - offer a promising prospect for new extraordinary membranes for water technology applications.

최근 2차원 나노 물질을 응용하여 수처리 막의 성능을 향상시킬 수 있는가에 대한 연구가 활발하다. 그 노력의 한 가운데에 원자 두께를 가지고 있으면서 손쉽게 구할 수 있고 층으로 쌓을 수도 있는 2차원 물질인 그래핀이 자리하고 있다. 이 총설에서 우리는 그래핀으로부터 만들 수 있는 두 가지 막 구조에 관한 기초 물질 전달 현상을 최근 연구 성과를 중심으로 다룬다. 그 물질 자체로 이미 물질 전달 차단성을 갖는 그래핀에 정확히 제어된 크기의 구멍을 뚫을 수 있다면 아마도 원자 크기 수준으로 얇은 두께 때문에 그래핀 막은 같은 기공 크기의 어느 막보다도 빠른 궁극적 투과도를 나타낼 것이며, 이로부터 선택도를 담보할 수 있다면 다양한 막 분리 공정에 적용할 수 있을 것이다. 그 한 예로, 나노미터 이하의 기공을 가정한 초박막 침투성 그래핀 막에 대한 분자동역학 연구와 몇몇 초기 실험 결과들이 해수담수화 막으로서의 가능성을 보인 점은 주목할 만하다. 그래핀 물질로부터 다른 구성을 가진 막을 설계할 수 있는데, 이 막은 적당히 산화된 그래핀 마이크로 판들을 무작위로 적층함으로써 구현할 수 있다. 그래핀 판 적층 간격을 나노미터 이하로 쉽게 제어할 수 있기 때문에 이 구조 역시 수처리 및 해수담수화 막으로서의 가능성을 시사한다. 기존 막기술에 존재하지 않던 구조와 물질 전달 성질을 가짐으로써 두 종류의 그래핀 막은 앞으로 수처리 기술을 비롯한 다양한 막 기술의 응용분야에서 효과적으로 기여할 가능성이 충분하다.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  2. O. Leenaerts, B. Partoens, and F. M. Peeters, "Graphene: A perfect nanoballoon", Appl. Phys. Lett., 93, 193107 (2008). https://doi.org/10.1063/1.3021413
  3. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. Van Der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Impermeable atomic membranes from graphene sheets", Nano Letters, 8, 2458 (2008). https://doi.org/10.1021/nl801457b
  4. T. Georgiou, L. Britnell, P. Blake, R. V. Gorbachev, A. Gholinia, A. K. Geim, C. Casiraghi, and K. S. Novoselov, "Graphene bubbles with controllable curvature", Appl. Phys. Lett., 99, 093103 (2011). https://doi.org/10.1063/1.3631632
  5. L. Tsetseris and S. T. Pantelides, "Graphene: An impermeable or selectively permeable membrane for atomic species?", Carbon, 67, 58 (2014). https://doi.org/10.1016/j.carbon.2013.09.055
  6. V. Berry, "Impermeability of graphene and its applications", Carbon, 62, 1 (2013). https://doi.org/10.1016/j.carbon.2013.05.052
  7. O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, A. Tolvanen, K. Nordlund, and J. Keinonen, "Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation", Phys. Rev. B - Cond. Mat. Mater. Phys., 81, 153401 (2010). https://doi.org/10.1103/PhysRevB.81.153401
  8. S. Hu, M. Lozada-Hidalgo, F. C. Wang, A. Mishchenko, F. Schedin, R. R. Nair, E. W. Hill, D. W. Boukhvalov, M. I. Katsnelson, R. A. Dryfe, I. V. Grigorieva, H. A. Wu, and A. K. Geim, "Proton transport through one-atom-thick crystals", Nature, 516, 227 (2014). https://doi.org/10.1038/nature14015
  9. S. Chen, L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, X. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Kang, J. Park, and R. S. Ruoff, "Oxidation resistance of graphene-coated Cu and Cu/Ni alloy", ACS Nano, 5, 1321 (2011). https://doi.org/10.1021/nn103028d
  10. Y.-P. Hsieh, M. Hofmann, K.-W. Chang, J. G. Jhu, Y.-Y. Li, K. Y. Chen, C. C. Yang, W.-S. Chang, and L.-C. Chen, "Complete corrosion inhibition through graphene defect passivation", ACS Nano, 8, 443 (2014). https://doi.org/10.1021/nn404756q
  11. S. C. O'Hern, C. A. Stewart, M. S. H. Boutilier, J.-C. Idrobo, S. Bhaviripudi, S. K. Das, J. Kong, T. Laoui, M. Atieh, and R. Karnik, "Selective molecular transport through intrinsic defects in a single layer of CVD graphene", ACS Nano, 6, 10130 (2012). https://doi.org/10.1021/nn303869m
  12. T. Yoon, J. H. Mun, B. J. Cho, and T. S. Kim, "Penetration and lateral diffusion characteristics of polycrystalline graphene barriers", Nanoscale, 6, 151 (2014). https://doi.org/10.1039/C3NR03849A
  13. M. Schriver, W. Regan, W. J. Gannett, A. M. Zaniewski, M. F. Crommie, and A. Zettl, "Graphene as a long-term metal oxidation barrier: worse than nothing", ACS Nano, 7, 5763 (2013). https://doi.org/10.1021/nn4014356
  14. R. A. Sampson, "On Stokes's current function", Proc. Natl. Acad. Sci. U.S.A., 182, 449 (1891).
  15. K.-K. Tio and S. S. Sadhal, "Boundary conditions for stokes flows near a porous membrane", Appl. Sci. Res., 52, 1 (1994). https://doi.org/10.1007/BF00849164
  16. M. Knudsen, "Die Molekularstromung der Gase durch Offnungen und die Effusion", Ann. Phys., 333, 999 (1909). https://doi.org/10.1002/andp.19093330505
  17. M. D. Fischbein and M. Drndic, "Electron beam nanosculpting of suspended graphene sheets", Appl. Phys. Lett., 93, 113107 (2008). https://doi.org/10.1063/1.2980518
  18. C. J. Russo and J. A. Golovchenko, "Atom-by-atom nucleation and growth of graphene nanopores", Proc. Natl. Acad. Sci. U.S.A., 109, 5953 (2012). https://doi.org/10.1073/pnas.1119827109
  19. C. A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M. D. Fischbein, K. Venta, Z. Luo, A. T. C. Johnson, and M. Drndic, "DNA translocation through graphene nanopores", Nano. Lett., 10, 2915 (2010). https://doi.org/10.1021/nl101046t
  20. G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W. Zandbergen, L. M. K. Vandersypen, and C. Dekker, "DNA translocation through graphene nanopores", Nano. Lett., 10, 3163 (2010). https://doi.org/10.1021/nl102069z
  21. S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, "Selective molecular sieving through porous graphene", Nat. Nanotechnol., 7, 728 (2012). https://doi.org/10.1038/nnano.2012.162
  22. M. I. Walker, R. S. Weatherup, N. A. W. Bell, S. Hofmann, and U. F. Keyser, "Free-standing graphene membranes on glass nanopores for ionic current measurements", Appl. Phys. Lett., 106, 023119 (2015). https://doi.org/10.1063/1.4906236
  23. S. C. O'Hern, M. S. Boutilier, J. C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, and R. Karnik, "Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes", Nano Lett., 14, 1234 (2014). https://doi.org/10.1021/nl404118f
  24. K. Celebi, J. Buchheim, R. M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J. I. Kye, C. Lee, and H. G. Park, "Ultimate permeation across atomically thin porous graphene", Science, 344, 289 (2014). https://doi.org/10.1126/science.1249097
  25. J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, "Graphene nanomesh", Nat. Nanotechnol., 5, 190 (2010). https://doi.org/10.1038/nnano.2010.8
  26. R. Zan, Q. M. Ramasse, U. Bangert, and K. S. Novoselov, "Graphene reknits its holes", Nano Lett., 12, 3936 (2012). https://doi.org/10.1021/nl300985q
  27. J. Lee, Z. Yang, W. Zhou, S. J. Pennycook, S. T. Pantelides, and M. F. Chisholm, "Stabilization of graphene nanopore", Proc. Natl. Acad. Sci. U.S.A., 111, 7522 (2014). https://doi.org/10.1073/pnas.1400767111
  28. M. E. Suk and N. R. Aluru, "Water transport through ultrathin graphene", J. Phys. Chem. Lett., 1, 1590 (2010). https://doi.org/10.1021/jz100240r
  29. M. E. Suk and N. R. Aluru, "Molecular and continuum hydrodynamics in graphene nanopores", RSC Adv., 3, 9365 (2013). https://doi.org/10.1039/c3ra40661j
  30. D. Cohen-Tanugi and J. C. Grossman, "Water desalination across nanoporous graphene", Nano Lett., 12, 3602 (2012). https://doi.org/10.1021/nl3012853
  31. D. Zhou, Y. Cui, P. W. Xiao, M. Y. Jiang, and B. H. Han, "A general and scalable synthesis approach to porous graphene", Nat. Commun., 5, 4716 (2014). https://doi.org/10.1038/ncomms5716
  32. C. Zhu, H. Li, and S. Meng, "Transport behavior of water molecules through two-dimensional nanopores", J. Chem. Phys., 141, 18 (2014).
  33. S. C. O'Hern, D. Jang, S. Bose, J. C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, "Nanofiltration across defect-sealed nanoporous monolayer graphene", Nano Lett., 15, 3254 (2015). https://doi.org/10.1021/acs.nanolett.5b00456
  34. S. P. Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai, and S. M. Mahurin, "Water desalination using nanoporous single-layer graphene", Nat. Nanotechnol., 10, 459 (2015). https://doi.org/10.1038/nnano.2015.37
  35. K. Sint, B. Wang, and P. Kral, "Selective ion passage through functionalized graphene nanopores", J. Am. Chem. Soc., 130, 16448 (2008). https://doi.org/10.1021/ja804409f
  36. Z. He, J. Zhou, X. Lu, and B. Corry, "Bioinspired graphene nanopores with voltage-tunable ion selectivity for $Na^+$ and $K^+$", ACS Nano, 7, 10148 (2013). https://doi.org/10.1021/nn4043628
  37. M. E. Suk and N. R. Aluru, "Ion transport in sub-5-nm graphene nanopores", J. Phys. Chem., 140, 084707 (2014). https://doi.org/10.1063/1.4866643
  38. A. E. Yaroshchuk, "Dielectric exclusion of ions from membranes", Adv. Colloid Interfac, 85, 193 (2000). https://doi.org/10.1016/S0001-8686(99)00021-4
  39. M. E. Williams, "A review of reverse osmosis theory", http://www.eetcorp.com/heepm/RO_TheoryE, (2003).
  40. D. Konatham, J. Yu, T. A. Ho, and A. Striolo, "Simulation insights for graphene-based water desalination membranes", Langmuir, 29, 11884 (2013). https://doi.org/10.1021/la4018695
  41. D. Cohen-Tanugi and J. C. Grossman, "Mechanical strength of nanoporous graphene as a desalination membrane", Nano Lett., 14, 6171 (2014). https://doi.org/10.1021/nl502399y
  42. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, "Unimpeded permeation of water through helium-leak-tight graphene- based membranes", Science, 335, 442 (2012). https://doi.org/10.1126/science.1211694
  43. H. W. Kim, H. W. Yoon, S. M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J. Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91 (2013). https://doi.org/10.1126/science.1236098
  44. H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao, and M. Yu, "Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation", Science, 342, 95 (2013). https://doi.org/10.1126/science.1236686
  45. Y. Han, Z. Xu, and C. Gao, "Ultrathin graphene nanofiltration membrane for water purification", Adv. Funct. Mater., 23, 3693 (2013). https://doi.org/10.1002/adfm.201202601
  46. C. N. Yeh, K. Raidongia, J. J. Shao, Q. H. Yang, and J. X. Huang, "On the origin of the stability of graphene oxide membranes in water", Nat. Chem., 7, 166 (2015). https://doi.org/10.1038/nchem.2145
  47. M. Hu and B. Mi, "Enabling graphene oxide nanosheets as water separation membranes", Environ. Sci. Technol., 47, 3715 (2013). https://doi.org/10.1021/es400571g
  48. R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, "Precise and ultrafast molecular sieving through graphene oxide membranes", Science, 343, 752 (2014). https://doi.org/10.1126/science.1245711
  49. H. Liu, H. Wang, and X. Zhang, "Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification", Adv. Mater., 27, 249 (2015). https://doi.org/10.1002/adma.201404054
  50. G. Cicero, J. C. Grossman, E. Schwegler, F. Gygi, and G. Galli, "Water confined in nanotubes and between graphene sheets: a first principle study", J. Am. Chem. Soc., 130, 1871 (2008). https://doi.org/10.1021/ja074418+
  51. D. W. Boukhvalov, M. I. Katsnelson, and Y. W. Son, "Origin of anomalous water permeation through graphene oxide membrane", Nano Lett., 13, 3930 (2013). https://doi.org/10.1021/nl4020292
  52. S. K. Kannam, B. D. Todd, J. S. Hansen, and P. J. Daivis, "Slip flow in graphene nanochannels", J. Chem. Phys., 135, 144701 (2011). https://doi.org/10.1063/1.3648049