DOI QR코드

DOI QR Code

Energy Harvesting Characteristics of Interdigitated (IDT) Electrode Pattern Embedded Piezoelectric Energy Harvester

IDT 전극 패턴 임베디드 압전 에너지 하베스터의 특성

  • Lee, Min-seon (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Chang-Il (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji-sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Woon Ik (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hong, Youn-Woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong Hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong Ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Yong-Ho (Department of Material Science and Engineering, Pusan University) ;
  • Jang, Yong-Ho (Technology & Research Center, Senbool Corporation) ;
  • Choi, Beom-Jin (Technology & Research Center, Senbool Corporation) ;
  • Jeong, Young-Hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
  • 이민선 (한국세라믹기술원 전자소재부품센터) ;
  • 김창일 (한국세라믹기술원 전자소재부품센터) ;
  • 윤지선 (한국세라믹기술원 전자소재부품센터) ;
  • 박운익 (한국세라믹기술원 전자소재부품센터) ;
  • 홍연우 (한국세라믹기술원 전자소재부품센터) ;
  • 백종후 (한국세라믹기술원 전자소재부품센터) ;
  • 조정호 (한국세라믹기술원 전자소재부품센터) ;
  • 박용호 (부산대학교 재료공학과) ;
  • 장용호 ((주)센불 기술연구소) ;
  • 최범진 ((주)센불 기술연구소) ;
  • 정영훈 (한국세라믹기술원 전자소재부품센터)
  • Received : 2016.07.13
  • Accepted : 2016.08.01
  • Published : 2016.09.01

Abstract

Piezoelectric thick films of a soft $Pb(Zr,Ti)O_3$ (PZT) based commercial material were produced by a conventional tape casting method. Thereafter, the interdigitated (IDT) Ag-Pd electrode pattern was printed on the $25{\mu}m$ thick piezoelectric film at room temperature. Co-firing of the 10-layer laminated piezoelectric thick films was conducted at $1,100^{\circ}C$ and $1,150^{\circ}C$ for 1 h, respectively. Piezoelectric cantilever energy harvesters were successfully fabricated using the IDT electrode pattern embedded piezoelectric laminates for 3-3 operation mode. Their energy harvesting characteristics were investigated with an excitation of 120 Hz and 1 g under various resistive loads (ranging from $10k{\Omega}$ to $200k{\Omega}$). A parabolic increase of voltage and a linear decrease of current were shown with an increase of resistive load for all the energy harvesters. In particular, a high output power of 3.64 mW at $100k{\Omega}$ was obtained from the energy harvester (sintered at $1,150^{\circ}C$).

Keywords

References

  1. H. Shen, J. Qiu, and M. balsi, Smart Mater. Struct., 19, 115017 (2010). [DOI: http://dx.doi.org/10.1088/0964-1726/19/11/115017]
  2. K. B. Kim, C. I. Kim, J. S. Yun, Y. H. Jeong, J. H. Nahm, J. H. Cho, J. H. Paik S. Nahm, and T. H. Seong, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 943 (2012).
  3. S. Pang, J. Kan, and W. Li, J. Comput. Inform. Syst., 11, 3203 (2015).
  4. E. Lefeuvre, A. Badel, C. Richard, and D. Guyoma, J. Intel. Mat. Syst. Str., 16, 865 (2005). [DOI: http://dx.doi.org/10.1177/1045389X05056859]
  5. Y. Wu, A. Badel, F. Formosa, W. Liu, and A. E. Agbossou, J. Intel. Mat. Syst. Str., 24, 1445 (2013). https://doi.org/10.1177/1045389X12470307
  6. C. Richard, D. D. Guyomar, D. Audigier, and G. Ching, 1999 Symposium on Smart Mater. Struct., 104 (1999).
  7. W. Y. Hur, T. Y. Lee, K. C. Lee, H. S. Hwang, and J. T. Song. J. Korean Inst. Electr. Electron. Mater. Eng., 24, 422 (2011).
  8. D. Vatansever, R. L. Hadimani, T. Shah, and E. Siores, Smart Mater. Struct., 20, 055019 (2011). [DOI: http://dx.doi.org/10.1088/0964-1726/20/5/055019]
  9. Y. Jiang, S. Shiono, H. Hamada, T. Fujita, K. Higuchi, and K. Maenaka, Power MEMS, 375378 (2010).
  10. Y. Qi, J. H. Kim, T. D. Nguyen, B. Lisko, P. K. Purohit, and M. C. McAlpine, Nano Lett., 11, 1331 (2011). [DOI: http://dx.doi.org/10.1021/nl104412b]
  11. B. Kumar and S. W. Kim, Nano Energy, 1, 342 (2012). [DOI: http://dx.doi.org/10.1016/j.nanoen.2012.02.001]
  12. I. Mahmud, S. C. Ur, and M. S. Yoon, Electron. Mater. Lett., 10, 223 (2014). [DOI: http://dx.doi.org/10.1007/s13391-013-3060-z]
  13. R. A. Islam and S. Priya, J. Am. Ceram. Soc., 89, 3147 (2006). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2006.01205.x]
  14. I. T. Seo, Y. J. Cha, I. Y. Kang, J. H. Choi, S. Nahm, T. H. Seong, and J. H. Paik, J. Am. Cerm. Soc., 94, 3629 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.04817.x]
  15. R. Ly, M. Rguiti, S. D'Astorg, A. Hajjaji, C. Courtois, and A. Leriche, Sensor. Actuat. A-Phys., 168, 95 (2011). [DOI: http://dx.doi.org/10.1016/j.sna.2011.04.020]
  16. D. Shen, J. H. Park, J. Ajitsaria, S. Y. Choe, H. C Wikle III, and D. J. Kim, J. Micromech. Microeng., 18, 055017 (2008). [DOI: http://dx.doi.org/10.1088/0960-1317/18/5/055017]
  17. A. Erturk and D. J. Inman, Smart Mater. Struct., 18, 025009 (2009). [DOI: http://dx.doi.org/10.1088/0964-1726/18/2/025009]
  18. S. Priya, IEEE Trans. Ultra. Ferro. Freq. Const., 57, 2610 (2010). [DOI: http://dx.doi.org/10.1109/TUFFC.2010.1734]
  19. Material Data, www.piceramic.com
  20. D. Berlincourt and H.H.A. Krueger,\ Properties of Morgan Electro Ceramic Ceramics, www.morgan-electroceramics.com