DOI QR코드

DOI QR Code

Hybrid Carbon Nanomaterials for Electromagnetic Interference Shielding

전자파 차폐용 하이브리드 탄소나노물질

  • Lee, Si-Hwa (Department of Mechanical Engineering, School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Oh, Il-Kwon (Department of Mechanical Engineering, School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2016.07.29
  • Accepted : 2016.08.18
  • Published : 2016.08.31

Abstract

Recently, electromagnetic interference (EMI) shielding materials have been extensively developed and significantly considered to protect electronic systems from harmful electromagnetic waves. Although, metal-based materials show high electrical conductivity and EMI shielding effectiveness, they have several challenging problems such as high density and corrosion. Carbon-based materials have been acclaimed as alternative EMI materials due to light weight, high mechanical properties, resistance to corrosion and excellent electrical conductivity. Here, we introduce 1-phase and 2-phase carbon materials as well as 3-phase hybrid carbon materials. The 3-phase hybrid carbon materials composed of metal nanoparticles, carbon nanotubes and graphene can be used as a promising EMI shielding material.

최근 유해한 전자파 문제에 대응하여 사용되는 전자파 차폐 물질에 대한 관심이 대두되고 있다. 우선, 전통적으로 사용되는 전도성이 높은 금속 기반 물질들이 있지만, 무겁고 부식성에 대한 한계가 있기에 이를 극복할 수 있는, 가볍고 기계적 강도가 우수하고, 부식에 대한 내구성이 있으며 전기 전도성이 높은 탄소계 물질들이 대두되었다. 탄소계 물질을 phase별로 나누어, 그래핀, CNT와 같은 1-phase 단일계 탄소계 물질부터 단일계 탄소물질에 금속이 추가되거나, 서로 다른 탄소계 물질이 혼합된 2-phase 탄소계 물질, 서로 다른 탄소계 물질에 기능성 금속이 추가된 3-phase 탄소계 물질순으로 각각의 특징을 소개하였다.

Keywords

References

  1. Tong, X.C., Advanced Materials and Design for Electromagnetic Interference Shielding, CRC Press, Abingdon, UK, 2009.
  2. Shui, X., and Chung, D.D.L., "Nickel Filament Polymer-Matrix Composites with Low Surface Impedance and High Electromagnetic Interference Shielding Effectiveness," Journal of Electronic Materials, Vol. 26, No. 8, 1997, pp. 928-934. https://doi.org/10.1007/s11664-997-0276-4
  3. Li, L., and Chung, D.D.L., "Electrical and Mechanical Properties of Electrically Conductive Polyethersulfone Composites." Composites, Vol. 25, No. 3, 1994, pp. 215-224. https://doi.org/10.1016/0010-4361(94)90019-1
  4. Wen, S., and Chung, D.D.L., "Electromagnetic Interference Shielding Reaching 70 dB in Steel Fiber Cement," Cement and Concrete Research, Vol. 34, 2004, pp. 39-332.
  5. Al-Saleh, M.H., Gelves, G.A., and Sundararaj, U., "Copper Nanowire/Polystyrene Nanocomposites: Lower Percolation Threshold and Higher EMI Shielding," Composites: Part A , Vol. 42, 2011, pp. 92-97
  6. Wang, J., Zhou, H., Zhuang, J., and Liu, Q., "Influence of Spatial Configurations on Electromagnetic Interference Shielding of Ordered Mesoporous Carbon/Ordered Mesoporous Silica/Silica Composites," Scientific Reports, Vol. 3, No. 3252, 2013, pp. 1-5.
  7. Deng, H., Skipa, T., Bilotti, E., Zhang, R., Lellinger, D., Mezzo, L., Fu, Q., Alig, I., and Peijs, T., "Preparation of High-Performance Conductive Polymer Fibers through Morphological Control of Networks Formed by Nanofillers," Advanced Functional Materials, Vol. 20, 2010, pp. 1424-1432. https://doi.org/10.1002/adfm.200902207
  8. Cao, M.-S., Song, W.-L., Hou, Z.-L., Wen, B., and Yuan, J., "The Effects of Temperature and Frequency on the Dielectric Properties, Electromagnetic Interference Shielding and Microwave- Absorption of Short Carbon Fiber/Silica Composties," Carbon, Vol. 48, 2010, pp. 788-796. https://doi.org/10.1016/j.carbon.2009.10.028
  9. Rajagopalan, M., and Oh, I.-K., "Fullerenol-Based Electroactive Artificail Muscles Utilizing Biocompatible Polyethermide," ACS Nano, Vol. 5, No. 3, 2011, pp. 2248-2256. https://doi.org/10.1021/nn103521g
  10. Yang, Y., Gupta, M.C., Dudley, K.L., and Lawrence, R.W., "Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic Interference Shielding," Nano Letter, Vol. 5, No. 11, 2005, pp. 2131-2134. https://doi.org/10.1021/nl051375r
  11. Li, N., Huang, Y., Du, F., He, X., Lin, X., Gao, H., Ma, Y., Li, F., Chen, Y., and Eklund, P.C., "Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites," Nano Letter, Vol. 6, No. 6, 2006, pp. 1141-1145. https://doi.org/10.1021/nl0602589
  12. Al-Saleh, M.H., and Sundararaj, U., "Electromagnetic Interference Shielding Mechanisms of CNT/Polymer Composites," Carbon, Vol. 47, 2009, pp. 1738-1746. https://doi.org/10.1016/j.carbon.2009.02.030
  13. Vazquez, E., and Prato, M., "Carbon Nanotubes and Microwaves: Interactions, Responses, and Applications," ACS Nano, Vol. 3, No. 12, 2009, pp. 3819-3824. https://doi.org/10.1021/nn901604j
  14. Liu, L., and Grunlan, J.C., "Clay Assisted Dispersion of Carbon Nanotubes in Conductive Epoxy Nanocomposites," Advanced Functional Materials, Vol. 17, 2007, pp. 2343-2348. https://doi.org/10.1002/adfm.200600785
  15. Bourdo, S., Li, Z., Biris, A.S., Watanabe, F., Viswanathan, T., and Pavel, I., "Structural, Electrical, and Thermal Behavior of Graphite-Polyaniline Composites with Increased Crystallinity," Advanced Functional Materials, Vol. 18, 2008, pp. 432-440. https://doi.org/10.1002/adfm.200700425
  16. Luo, X., and Chung, D.D.L, "Electromagnetic Interference Shielding Reaching 130 dB Using Flexible Graphite," Carbon, Vol. 34, No. 10, 1996, pp. 1293-1303. https://doi.org/10.1016/0008-6223(96)82798-9
  17. Huang, W., Ouyang, X., and Lee, L.J., "High-Performance Nanopapers Based on Benzenesulfonic Functionalized Graphenes," ACS Nano, Vol. 6, No. 11, 2012, pp. 10178-10185. https://doi.org/10.1021/nn303917p
  18. Wen, B., Cao, M., Lu, M., Cao, W., Shi, H., Liu, J., Wang, X., Jin, H., Fang, X., Wang, W., and Yuan, J., "Reduced Graphene Oxides: Light-Weight and High Efficiency Electromagnetic Interference Shielding at Elevated Temperatures," Advanced Materials, Vol. 26, 2014, pp. 3484-3489. https://doi.org/10.1002/adma.201400108
  19. Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., Tang, B., Chan, M., and Kim, J.-K., "Highly Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for High- Performance Electromagnetic Interference Shielding," Advanced Materials, Vol. 26, 2014, pp. 5480-5487. https://doi.org/10.1002/adma.201305293
  20. Yan, D.-X., Pang, H., Li, B., Vajtai, R., Xu, L., Ren, P.-G., Wang, J.-H., and Li, Z.-M., "Structured Reduced Graphene Oxide/ Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding," Advanced Functional Materials, Vol. 25, 2014, pp. 559-566.
  21. Kim, J., Jeon, J.-H., Kim, H.-J., Lim, H., and Oh, I.-K., "Durable and Water-Floatable Ionic Polymer Actuator with Hydrophobic and Asymmetrically Laser-Scribed Reduced Graphene Oxide Paper Electrodes," ACS Nano, Vol. 8, No. 3, 2014, pp. 2986- 2997. https://doi.org/10.1021/nn500283q
  22. Zhang, H.B., Yan, Q., Zheng, W.G., He, Z., and Yu, Z.Z., "Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding," ACS Applied Materials & Interfaces, Vol. 3, 2011, pp. 918-924. https://doi.org/10.1021/am200021v
  23. Eswaraiah, V., Sankaranarayanan, V., and Ramaprabhu, S., "Functionalized Graphene-PVDF Foam Composites for EMI Shielding," Macromolecular Materials and Engineering, Vol. 296, 2011, pp. 894-898. https://doi.org/10.1002/mame.201100035
  24. Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., Zhang, C., Gao, H., and Chen, Y., "Electromagnetic Interference Shielding of Graphene/epoxy Composite," Carbon, Vol. 47, 2009, pp. 922-925. https://doi.org/10.1016/j.carbon.2008.12.038
  25. Shen, B., Zhai, W., and Zheng, W., "Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material with Efficient EMI Shielding," Advanced Functional Materials, Vol. 24, 2014, pp. 4542-4548. https://doi.org/10.1002/adfm.201400079
  26. Hong, S.K., Kim, K.Y., Kim, T.Y., Kim, J.H., Park, S.W., Kim, J.H., and Cho, B.J., "Electromagnetic Interference Shielding Effectiveness of Monolayer Graphene," Nanotechnology, Vol. 23, No. 455704, 2012, pp. 1-5.
  27. Chen, Z., Xu, C., Ma, C., Ren, W., and Cheng, H.-M., "Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding," Advanced Materials, Vol. 25, 2013, pp. 1296-1300. https://doi.org/10.1002/adma.201204196
  28. Batrakov, K., Kuzhir, P., Maksimenko, S., Paddubskaya, A., Voronovich, S., Lambin, P., Kaplas, T., and Svirko, Y., "Flexible Transparent Graphene/polymer Multilayers for Effieient Electromagnetic Field Absorption, Scientific Reports, Vol. 4. No. 7191, 2014, pp. 1-5.
  29. Kim, G.-T., Gim, S.-J., Cho, S.-M., Koratkar, N., and Oh, I.-K., "Wetting-Transparent Graphene Films for Hydrophobic Water- Harvesting Surfaces," Advanced Materials, Vol. 26, 2014, pp. 5166-5172. https://doi.org/10.1002/adma.201401149
  30. Lee, S.-H., Jung, J.-H., and Oh, I.-K., "3D Networked Graphene-Ferromagnetic Hybrids for Fast Shape Memory Polymers with Enhanced Mechanical Stiffness and Thermal Conductivity," Small, Vol. 10, No. 19, 2014, pp. 3880-3886. https://doi.org/10.1002/smll.201400624
  31. Sridhar, V., Jung, J.-H., and Oh, I.-K., "Microwave Syntheses of Graphene and Graphene Decorated with Metal Nanoparticles," Carbon, Vol. 49, 2011, pp. 4449-4457. https://doi.org/10.1016/j.carbon.2011.06.038
  32. Singh, A.P., Mishra, M., Chandra, A., and Dhawan, S.K., "Graphene Oxide/ferrofluide/cement Composites for Electromagnetic Interference Shielding Application," Nanotechnology, Vol. 22, No. 465701, 2011, pp. 1-9.
  33. Li, Y.-A., Tai, N.-H., Chen, S.-K., and Tsai, T.-Y., "Enhancing the Electrical Conductivity of Carbon-Nanotube-Based Transparnet Conductive Films Using Functionalized Few-Walled Carbon Nanotubes Decorated with Palladium Nanoparticles as Fillers," ACS Nano, Vol. 5, No. 8, 2011, pp. 6500-6506. https://doi.org/10.1021/nn201824h
  34. Kim, H.M., Kim, K., Lee, C.Y., Joo, J., Cho, S.J., Yoon, H.S., Pejaković, D.A., Yoo, J.W., and Epstein, A.J., "Electrical Conductivity and Electromagnetic Interference Shielding of Multiwalled Carbon Nanotube Composites Containing Fe Catalyst," Applied Physics Letters, Vol. 84, No. 4, 2004, pp. 589-591.
  35. Gupta, T.K., Singh, B.P., Mathur, R.B., and Dhakate, S.R., "Multi-walled Carbon Nanotube-graphene-polyaniline Multiphase Nanocomposite with Superior Electromagnetic Shielding Effectiveness," Nanoscale, Vol. 6, 2014, pp. 842-851. https://doi.org/10.1039/C3NR04565J
  36. Kim, H.-J., Randriamahazaka, H., and Oh, I.-K., "Highly Conductive, Capacitive, Flexible and Soft Electrodes Based on a 3D Graphene-Nanotube-Palladium Hybrid and Conducting Polymer," Small, Vol. 10, No. 24, 2014, pp. 5023-5029. https://doi.org/10.1002/smll.201401613
  37. Sridhar, V., Kim, H.-J., Jung, J.-H., Lee, C., Park, S., and Oh, I.- K., "Defect-Engineered Three-Dimensional Graphene-Nanotube- Palladium Nanostructures with Ultrahigh Capacitance," ACS Nano, Vol. 6, No. 12, 2012, pp. 10562-10570. https://doi.org/10.1021/nn3046133
  38. Lee, S.-H., Sridhar, V., Jung, J.-H., Karthikeyan, K., Lee, Y.-S., Mukherjee, R., Koratkar, N., and Oh, I.-K., "Graphene-Nanotube- Iron Hierarchical Nanostructure as Lithium Ion Battery Anode," ACS Nano, Vol. 7, No. 5, 2013, pp. 4242-4251. https://doi.org/10.1021/nn4007253
  39. Mishra, M., Singh, A.P., and Dhawan, S.K., "Expanded Graphite- Nanoferrite-Fly Ash Composites for Shielding of Electromagnetic Pollution," Journal of Alloys and Compounds, Vol. 557, 2013, pp. 244-251. https://doi.org/10.1016/j.jallcom.2013.01.004
  40. Singh, A.P., Garg, P., Alam, F., Singh, K., Mathur, R.B., Tandon, R.P., Chandra, A., and Dhawan, S.K., "Phenolic Resin-Based Composite Sheets Filled with Mixtures of Reduced Graphene Oxide, ${\gamma}-Fe_2O_3$ and Carbon Fibers for Excellent Electromagnetic Interference Shielding in the X-band," Carbon, Vol. 50, 2012, pp. 3868-3875. https://doi.org/10.1016/j.carbon.2012.04.030
  41. Singh, A.P., Mishra, M., Hashim, D.P., Narayanan, T.N., Hahm, M.G., Kumar, P., Dwivedi, J., Kedawat, G., Gupta, A., Singh, B.P., Chandra, A., Vajtai, R., Dhawan, S.K., Ajayan, P.M., and Gupta, B.K., "Probing the Engineered Sandwich Network of Vertically Aligned Carbon Nanotube-Reduced Graphene Oxide Composites for High Performance Electromagnetic Interference Shielding Applications," Carbon, Vol. 85, 2015, pp. 79-88. https://doi.org/10.1016/j.carbon.2014.12.065
  42. Zhu,Y., Li, L., Zhang, C., Casillas, G., Sun, Z., Yan, Z., Ruan, G., Peng, Z., Raji, A.-R.O., Kittrell, C., Hauge, R. H., and Tour, J.M., "A Seamless Three-Dimensional Carbon Nanotube Graphene Hybrid Material," Nature Communications, Vol. 3, No. 1225, 2012, pp. 1-7.

Cited by

  1. Enhanced Formation of the Carbon Microcoils by the Stepwise Type Manipulation of CS2 Flow Injection vol.765, pp.1662-9795, 2018, https://doi.org/10.4028/www.scientific.net/KEM.765.83
  2. 전기저항측정법 및 젖음성을 이용한 나노복합재료의 미세파손 감지능 및 계면물성 평가 vol.30, pp.2, 2016, https://doi.org/10.7234/composres.2017.30.2.138
  3. 분산제에 따른 자성금속 무전해도금 기반 그래핀 분산 특성 및 복합재의 전자파 차폐 특성 연구 vol.31, pp.3, 2018, https://doi.org/10.7234/composres.2018.31.3.111
  4. 고효율 전자파 차폐를 위한 이종금속 코팅 탄소섬유 개발 vol.33, pp.4, 2016, https://doi.org/10.7234/composres.2020.33.4.191