DOI QR코드

DOI QR Code

A Design and Implementation of Dual-band Monopole Antenna with DGS

DGS를 이용한 이중 대역 모노폴 안테나의 설계 및 제작

  • 최태일 (광주여자대학교 보건행정학과) ;
  • 김정근 (광주대학교 전기전자공학과) ;
  • 윤중한 (신라대학교 전자공학전공)
  • Received : 2016.07.29
  • Accepted : 2016.09.24
  • Published : 2016.09.30

Abstract

In this paper, a microstrip-fed dual-band monopole antenna with DGS(: Defected Ground System) for WLAN(: Wireless Local Area Networks) applications was designed, fabricated and measured. The proposed antenna is based on a microstrip-fed structure, and composed of two strip lines and DGS structure and then designed in order to get dual band characteristics. We used the simulator, Ansoft's High Frequency Structure Simulator(: HFSS) and carried out simulation about parameters W2, L10, W3, and DGS to get the optimized parameters. The proposed antenna is made of $21.0{\times}36.0{\times}1.6mm3$ and is fabricated on the permittivity 4.4 FR-4 substrate. The experiment results are shown that the proposed antenna obtained the -10 dB impedance bandwidth 700 MHz(2.10~2.80 GHz) and 1,780 MHz(5.02~6.80 GHz) covering the WLAN bands. Also, the measured gain and radiation patterns characteristics of the proposed antenna are presented at required dual-band(2.4GHz band/5.0GHz band), respectively.

본 논문에서는 DGS(: Defected Ground Structure)을 적용하여 WLAN 시스템에 적용 가능한 모노폴 안테나를 설계, 제작 및 측정하였다. 제안된 안테나는 마이크로스트립 급전을 바탕으로 두 개의 선로와 DGS를 갖도록 설계하여 이중대역 특성을 갖도록 하였다. 상용 툴인 HFSS을 사용하여 $W_2$, $L_{10}$, $W_3$과 DGS 파라미터에 대한 시뮬레이션을 수행하여 최적화된 수치를 얻었다. 제안된 안테나는 $21.0{\times}36.0{\times}1.6mm^3$의 크기로 유전율 4.4인 FR-4 기판 위에 설계 및 제작되었다. 제작 결과, 제안된 안테나는 -10 dB 임피던스 대역폭을 기준으로 700 MHz (2.10~2.80 GHz) 그리고 1,780 MHz(5.02~6.80 GHz)의 대역폭을 얻었다. 또한, 제안된 안테나의 측정 이득과 방사패턴 특성이 요구되는 이중대역에서 제시되었다.

Keywords

References

  1. W. Ltutzman and G. Ahiele, Atnenna Theory and Design. 3rd John Wiley & Sons, Inc., 2012.
  2. G. Kumar and K. Pay, Broadband Microstrip Antennas. Boston. London : Artech House Antennas, 2003.
  3. Y. Park, "Characteristics of patch antenna for WLAN," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 6, 2011, pp. 803-808.
  4. O. Kim, "Design of dual band microstrip antenna for wireless communication applications," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 6, 2012, pp. 1275-1279. https://doi.org/10.13067/JKIECS.2012.7.6.1275
  5. T. Choi, B. Bum, and S. Lim, "Modified Monopole Antenna for Multi resonance Wideband," J. of the Korea Institute of Electronic Communication Sciences, vol. 3, no. 2, 2008, pp. 53-57.
  6. S. Wee, N. Kim, and S. Lee, "Design and Fabrication of the Antenna for Wibro and WLAN Communications Using CPWG Structure," J. of Electromagnetic Engineering And Science, vol. 19, no. 10, 2008, pp. 1086-1095.
  7. Y. Seo, J. Jung, H. Lee, and Y. Lim, "Design of circualr monopole antenna with symmetrically folded stub for WLAN operation," Microwave and Optical Technology Letters, vol. 54, no. 7, 2012, pp. 1549-1552. https://doi.org/10.1002/mop.26845
  8. J. Hoon, Y. Rhee, and Y. Jang, "A study on the rectangular ring open-ended monopole antenna with a vertical strip for WLAN dual band operations," Microwave and Optical Technology Letters, vol. 55, no. 3, 2013, pp. 619-624. https://doi.org/10.1002/mop.27348
  9. Y. Koo and D. Im, "Design and Manufacture of Modified Ring antenna with Stub and Ground Slot for WLAN Applications," J. of Information and Communication Convergence Engineering, vol. 17, no. 10, 2013, pp. 2285-2272.
  10. C. Bark, M. Dim, and H. Sung, "Design of Compact Microstrip Patch Antenna for WLAN of IEEE 802.11a," J. of Korea Information Science, vol. 19, no. 2, 2013, pp. 611-617.
  11. J. Yoon and D. Lee "A Design and Implementation of Multi band Monopole Antenna for GPS/WiMAX/WLAN Applications," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 10, 2015, pp. 1189-1196. https://doi.org/10.13067/JKIECS.2015.10.10.1189
  12. J. Yoon and D. Lee "A Design and Implementation of Multi band Monopole Antenna for GPS/WiMAX/WLAN Applications," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 10, 2015, pp. 1189-1196. https://doi.org/10.13067/JKIECS.2015.10.10.1189
  13. P. Jark, "design of low pass filter combined PCB antenna using the defected ground structure," Master's Thesis, Sungkyunkwan University, 2011.
  14. S. Jee, H. Lee, W. Yoon, J. Lim, D. Ahn, and S. Han, "Current distribution variation on patch antenna by defected ground structures," J. of the Korea Institute of Information Technology, vol. 9, no. 1, 2011, pp. 81-88.
  15. A. Arya, A. Patnaik, and M. Kartikeyan, "Microstrip patch antenna with skew-F shaped DGS for dual band operation," Progress In Electromagnetics Research M, vol. 19, 2011, pp. 147-160. https://doi.org/10.2528/PIERM11052305
  16. H. Elftouh, N. Aouhami, M. Aghoutane, S. Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch with defected grund structure," Progress In Electromagnetics Research C, vol. 55, 2014, pp. 25-33. https://doi.org/10.2528/PIERC14092302
  17. S. Oukil, H. Kimouche, and A. Azrar, "Sectored annular ring microstrip antenna with DGS for circular polarization," Microwave and Optical Technology Letters, vol. 58, no. 3, 2016, pp. 569-573. https://doi.org/10.1002/mop.29615