DOI QR코드

DOI QR Code

Effect of Swirl Angles and Combustion Characteristics of Low Swirl Model Combustor

저선회 모델 연소기의 연소특성 및 선회각도 영향

  • Jeong, Hwanghui (Department of Aerospace Engineering, Sunchon National University) ;
  • Lee, Keeman (School of Aerospace and Mechanical Engineering, Sunchon National University)
  • Received : 2016.06.13
  • Accepted : 2016.07.15
  • Published : 2016.08.01

Abstract

This study aims to confirm the characteristics of low swirl combustion at our low swirl model combustor. To do it, it is experimentally conducted by evaluating the flame shape, stability region and emissions according to the swirl angle. The most significant feature of low swirl combustion is a occurrence of lifted flame. Such lifted flames happen to combine exquisitely propagating feature of premixed flame with diverging flow. This feature of lifted flame was confirmed through a velocity flow field and visualized the flame in this model combustor. The visualized flame was classified according to the thermal power and equivalence ratio. The variation study in swirl angles showed that the lean flammable limit could be extended only by swirl angles. Also, as the swirl angle increased, it was confirmed that the NOx and CO emissions were decreased due to the mixing enhancement and shorter resident time.

본 연구의 목적은 저선회 모델 연소기에서 저선회 연소의 특성을 확인하는 것이다. 이를 위해 선회각도에 따른 화염의 형상 및 안정화 영역, 배기성능에 대한 평가가 실험적으로 수행되었다. 저선회 연소의 큰 특징은 화염이 부상되어 존재하게 되는데, 이러한 부상화염은 확대유동과 예혼합 화염의 전파특성이 절묘하게 결합되어 발생하게 된다. 본 연소기에서 이러한 부상화염의 특징을 속도 유동장을 통하여 확인하였으며 화염을 가시화하여 나타내었다. 가시화된 화염은 열용량과 당량비에 따라 분류하였다. 선회각도의 변화에 따른 연구를 통해 선회각도만으로도 희박 가연한계를 확장시킬 수 있음을 보였다. 또한 선회각도가 증가할수록 혼합이 향상되고 체류시간이 짧아져 NOx와 CO의 배출이 감소되는 것으로 확인되었다.

Keywords

References

  1. Hwang, C.H. and Lee, C.E., "Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor," Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 34, No. 7, pp. 79-88, 2006.
  2. Cheng, R.K., Yegian, D.T., Miyasato, M.M., Samuelsen, G.S., Benson, C.E., Pellizzari, R. and Loftus, P., "Scaling and Development of Low-Swirl Burners for Low_emission Furnaces and Boilers," Proceedings of the Combustion Institute, Vol. 28, pp. 1305-1313, 2000. https://doi.org/10.1016/S0082-0784(00)80344-6
  3. Cheng, R.K., Fable, S.A., Schmidt, D., Arellano, L. and Smith, K.O., "Development of a Low Swirl Injector Concept for Gas Turbines," 2001 International Joint Power Conference, New Orleans, L.A., U.S.A., IJPGC2001/FACT-19055, June 2001.
  4. Yegian, D.T. and Cheng, R.K., "Development of a Vane-Swirler for Use in a Low NOx Weak-swirl Burner," Energy and Environment Division Lawrence Berkeley National Laboratory berkeley, LBNL-39354, 1996.
  5. Jeong, H.H., Sim, K.S. and Lee, K.M., "A Study on the Characteristics of Low Swirl Combustor for Gas Turbine - Part I : Uniform Velocity Field," 44th KSPE Spring Conference, Busan, Korea, pp. 282-285, May 2015.
  6. Jeong, H.H., Jang, M.S., Kim, S.G. and Lee, K.M., "A Study on the Characteristics of Model Low Swirl Combustor for Gas Turbine - Part II: Effect of Swirl Angles," 45th KSPE Fall Conference, Gyeongju, Korea, pp. 336-338, Nov. 2015.
  7. Day, M., Tachibana, S., Bell, J., Lijewski, M., Becjner, V. and Cheng, R.K., "A Combined Computational and experimental Characterization of Lean Premixed Turbulent Low Swirl Laboratory Flames: I. Methane Flames," Combustion & Flame, Vol. 159, Issue 1, pp. 275-290, 2012. https://doi.org/10.1016/j.combustflame.2011.06.016
  8. Ballaachey, G.E. and Johnson, M.R., "Prediction of Blowoff in a fully controllable low-swirl burner burning alternative fuels: effects of burner geometry, swirl, and Fuel Composition," Proc. Combust. Inst., Vol. 34, Issue 2, pp. 3193-3201, 2013. https://doi.org/10.1016/j.proci.2012.05.095
  9. Beerer, D., McDonell, V., Therkelsen, P. and Cheng, R.K., "Flashback and Turbulent Flame Speed Measurements in Hydrogen/Methane Flames Stabilized by a Low-Swirl Injector at Elevated Pressures and Temperatures," Journal of Engineering for Gas Turbines Power, Vol. 136, Issue 3, 2013.
  10. Carlsson, H., Nordstrom, E., Bohlin, A., Petersson, P., Wu, Y., Collin, R., Alden, M., Bengtsson, P.E. and Bai, X.S., "Large Eddy Simulations and Rotational CARS/PIV/PLIF Measurements of a Lean Premixed Low Swirl Stabilized Flame," Combustion & Flame, Vol. 161, Issue 10, pp. 2539-2551, 2014. https://doi.org/10.1016/j.combustflame.2014.03.017
  11. Carlsson, H., Carlsson, C., Fuchs, L. and Bai, X.S., "Large Eddy Simulation and Extended Dynamic Mode Stabilized Flame," Journal of Flow, Turbulence and Combustion, Vol. 93, pp. 505-519, 2014. https://doi.org/10.1007/s10494-014-9560-6
  12. Petersson, P., Olofsson, H., Brackman, C., Seyfried, H., Linne, J., Cheng, R.K., Nauert, A., Geyer, D. and Dreizler, A., "Simultaneous PIV/OH-PLIF, Rayleigh Thermometry/OH-PLIF and Stereo PIV Measurements in a Low-Swirl Flames," Optical Society of America, Vol. 46, No. 19, pp. 3928-3936, 2007.
  13. Kagn, D.M., Culick, F.E.C. and Ratner, A., "Combustion Dynamics of a Low-Swirl Combustor," Combustion & Flame, Vol. 151, Issue 3, pp. 412-425, 2007. https://doi.org/10.1016/j.combustflame.2007.07.017
  14. Rankin, D.D., Lean Combustion : Technology and Control, 1th ed., Elsevier Inc., Irvine, C.A., U.S.A., 2007.

Cited by

  1. An experimental study on the effect of a turbulence generating plate in low swirl combustor vol.31, pp.12, 2017, https://doi.org/10.1007/s12206-017-1152-7