DOI QR코드

DOI QR Code

Evaluation of Microbes through Microfiltration within the Water Treatment Processes

정밀여과막 및 입상활성탄을 이용한 수처리 공정에 따른 박테리아 거동 평가

  • Shim, Moon Jung (Department of Clinical Laboratory Science, Ansan University) ;
  • Lim, Jae Won (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Kim, Tae Ue (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University)
  • 심문정 (안산대학교 임상병리과) ;
  • 임재원 (연세대학교 보건과학대학 임상병리학과) ;
  • 김태우 (연세대학교 보건과학대학 임상병리학과)
  • Received : 2016.08.03
  • Accepted : 2016.08.30
  • Published : 2016.09.30

Abstract

Economic growth has increased the living standards around the world. Water pollution, in particular, is a public relations issue because it poses a direct threat to everyone's lives. As of recently, the production of taste and odor (T&O) compounds has been a common problem in the water industry. The adsorption process using granular activated carbon (GAC) has been the most widely used process. The objectives of this study were to evaluate the microorganisms before and after the backwashing of GAC and to identify the species of the microorganisms found. Five dominants microorganisms were confirmed after the microfiltration process from backwashing of GAC, and the dominant bacterial species were found to be ${\beta}$-proteobacterium species, Porphyrobacter donghaensis, Polaromonas rhizophaerae, Hydrogenophaga species, and Pseudonocardia species. However, when UV treatment after microfiltration was performed, Hydrogenophaga species and Psedonocardia species were eliminated. Herein, I conclude that the UV treatment post microfiltration process is more efficient than microfiltration process alone. The findings of this study may provide useful information regarding the management of microfiltration process.

경제성장으로 생활수준이 향상됨에 따라 국민건강을 직접적으로 위협하는 수질오염에 대해 세계적으로 관심을 갖게 되었으며, 최근 맛 냄새 유발물질 발생의 문제가 대두되기 시작했다. 본 연구에서는 G정수장 내의 모형플랜트에서 사용된 원수 및 각 공정에 대한 공정수를 물 시료로 채취하여 정밀여과막 공정 및 입상활성탄 공정에서 박테리아의 거동에 대해 확인하였고, 또한 입상활성탄의 지속적 사용을 위한 역세척 가동 시 박테리아의 탈리 여부와 종 동정을 실시하였다. 분석 결과, 정밀막여과 공정을 거치는 경우 수계 내 존재하는 박테리아가 제거가 되는 것을 확인하였으며, 역세척 가동시 ${\beta}$-proteobacterium species, Porphyrobacter donghaensis, Polaromonas rhizophaerae, Hydrogenophaga species, Pseudonocardia species 등 총 5종의 우점종 박테리아가 나타나는 것을 확인할 수 있었으며, 정밀여과막 공정 이후 UV 공정을 추가 처리한 공정 처리수를 활성탄 공정에 유입한 2종의 박테리아는 나타나지 않는 것을 확인함에 따라 생물활성탄 공정에 의한 오염물질 제거에서 박테리아 군집의 UV에 대한 민감도가 고려되어야 함을 알 수 있었다. 이를 바탕으로 수처리 공정의 설계에 유용한 지표를 제공하고자 하였다.

Keywords

References

  1. Ho L, Hoefel D, Bock F, Saint CP, Newcombe G. Biodegradation rates of 2-methylisoboneol and geosmin through sand filters and in bioreactors. Chemosphere. 2007;66(11):2210-2218. https://doi.org/10.1016/j.chemosphere.2006.08.016
  2. Vorosmarty CJ, McLntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, et al. Global threats to human water security and river biodiversity. Nature. 2007;467(7314):555-561.
  3. Robertson RF, Hammond A, Jauncey K, Beveridge MCM, Lawton LA. An investigation into the occurrence of geosmin responsible for earthy-musty taints in UK farmed rainbow trout, Onchorhynchus mykiss. Aquacul-ture. 2006;259(8):153-163. https://doi.org/10.1016/j.aquaculture.2004.11.046
  4. Gerber NN, Lechevalier HA. Geosmin, an Earthy-smelling substance isolated from Actinomycetes. Appl En-viron Microbiol. 1965;13(6):935-938.
  5. Madaeni SS, Fane AG, Grohmann GS. Virus removal from water and wastewater using membrane. J Mem-brane Sci. 1995;102(1):65-75. https://doi.org/10.1016/0376-7388(94)00252-T
  6. Taedosiu CC, Kennedy MD, Straten HA, Schippers JC. Evaluation of secondary refinery effluent treatment using ultrafiltration membranes. Water Res. 1999:33(9):2172-2180. https://doi.org/10.1016/S0043-1354(98)00433-3
  7. Asami M, Aizawa T, Morioka T, Nishijima W, Tabata A, Magara Y. Bromate removal during transition from new granular activated carbon (GAC) to biological activated carbon (BAC). Water Res. 1999:33(12):2797-2804. https://doi.org/10.1016/S0043-1354(98)00504-1
  8. Scholz M, Martin RJ. Ecological equilibrium on biological activated carbon. Water Res. 1997;31(12):2959-2968. https://doi.org/10.1016/S0043-1354(97)00155-3
  9. Walter WJ, Pirbazari M, Melson GL. Biological growth on activated carbon: an investigated by scanning electronic ROS copy. Environ Sci Technol. 1978;12(7):817-819. https://doi.org/10.1021/es60143a005
  10. Moll DM, Summers RS, Fonseca AC, Matheis W. Impact of temperature on drinking water biofilter perfor-mance and microbial community structure. Environ Sci Technol. 1999;33(14):2377-2382. https://doi.org/10.1021/es9900757
  11. Lanmark J, Storey MV, Ashbolt NJ, Stenstrom TA. Artificial groundwater treatment: biofilm activity and organic carbon removal performance. Water Res. 2004;38(3):740-748. https://doi.org/10.1016/j.watres.2003.10.021
  12. Chestnutt TE, Bach MT, Mazyck DW. Improvement of thermal reactivation of activated carbon for the removal of 2-emthylisoborneol. Water Res. 2007;41(1):79-86. https://doi.org/10.1016/j.watres.2006.09.010
  13. Dussert B, Van Stone G. The biological activated carbon process for water purification. Water Eng Manage. 1994;141(21):22-24.
  14. Sevais P, Billen G, Bouillot P, Benezet M. A pilot study of biological GAC filtration in drinking water treat-ment. J Wat Sup. 1992;41(3):163-168.
  15. Park S, Lee S, Sin S, Jun C, Kim C. Variation of pollutant removal efficiency and backwashing effect of BAC basin in advanced water treatment processes. J Kor Soc Environ Eng. 2008;30(1):45-53.
  16. Carlson KH, Amy GL. Ozone and biofiltration optimization for multiple objective. J AWWA. 2001;93(1):88-98.
  17. Park J, Takizawa S, Katayama H, Ohgaki S. Biofilter pretreatment for the control of microfiltration mem-brane fouling. Water Sci Tech: Water Supply. 2002; 2(2):193-199.
  18. Son HJ, Park HK, Lee SA, Jung EY, Jung CW. The characteristics of microbial community for biological activated carbon in water treatment plant. J Kor Soc Environ Eng. 2005;27(11):1311-1320.
  19. Taedosiu CC, Kennedy MD, Straten HA, Schippers JC. Evaluation of secondary refinery effluent treatment using ultra filtration membranes. Water Res. 1999;33(9):2172-2180. https://doi.org/10.1016/S0043-1354(98)00433-3
  20. Cho J, Lim J, Baek D, Lee SH, Lee IS, Lee H, et al. Development of techniques for evaluating the virus re-moval rate using adenovirus. J Korean Soc Water & Wastewater. 2015;29(6):633-641. https://doi.org/10.11001/jksww.2015.29.6.633
  21. Klimenko N, Winter-Nielsen M, Smolin S, Nevynna L, Sydorenko J. Role of the physicochemical factors in the purification process of water from surface-active matter by biosorption. Water Res. 1992;36(20):231-241.
  22. Ridgway HF, Olsan BH. Scanning electron microscope evidence for bacterial colonization of drinking water distribution system. Appl Environ Microbiol. 1981;21(3):274-287.
  23. Son HJ, Yoo SJ, Roh JS, Yoo PJ. Biological activated carbon (BAC) process in water treatment. J Kor Soc Environ Eng. 2009;31(4):308-322.
  24. Baek D, Lim J, Cho Y, Ahn YT, Lee H, Park D, et al. Investigation of geosmin removal efficiency by micro-organism isolated from biological activated carbon. J Korean Soc Water & Wastewater. 2015;29(1):47-55. https://doi.org/10.11001/jksww.2015.29.1.047

Cited by

  1. UV 전처리 유무에 따른 입상활성탄의 세균 생체량 및 군집 구조 비교 vol.17, pp.12, 2016, https://doi.org/10.5392/jkca.2017.17.12.064