DOI QR코드

DOI QR Code

Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion

  • Cui, Ying (Division of Naval Architecture and Ocean Systems Engineering, Korea Maritime and Ocean University) ;
  • Hyun, Beom-Soo (Division of Naval Architecture and Ocean Systems Engineering, Korea Maritime and Ocean University)
  • Received : 2015.11.23
  • Accepted : 2016.05.30
  • Published : 2016.09.30

Abstract

In order to optimize the performance of a Wells turbine with fixed guide vanes, the designs of an end plate and a ring on the tip of the turbine rotor are proposed as penetrating blade tip treatments. In this study, numerical investigations are made using computational fluid dynamics (CFD)-based ANSYS Fluent software, and validated by corresponding experimental data. The flow fields are analyzed and non-dimensional coefficients $C_A$, $C_T$ and ${\eta}$ are calculated under steady-state conditions. Numerical results show that the stalling phenomenon on a ring-type Wells turbine occurs at a flow coefficient of ${\phi}=0.36$, and its peak efficiency can reach 0.54, which is 16% higher than that of an unmodified turbine and 9% higher than in the case of an endplate-type turbine. In addition, quasi-steady analysis is used to calculate the mean efficiency and output work of a wave cycle under sinusoidal flow conditions. As a result, it has been found that the ring-type turbine is superior to other types of Wells turbines.

Keywords

References

  1. Cruz, J., 2008. Ocean Wave Energy - Current Status and Future Perspectives. Springer-Verlag, Berlin, p. 210.
  2. Cui, Y., Liu, Z., Hyun, B.S., 2015a. Pneumatic performance of staggered impulse turbine for OWC wave energy convertor. J. Therm. Sci. 24 (5), 1-7. https://doi.org/10.1007/s11630-015-0748-4
  3. Cui, Y., Liu, Z., Hyun, B.S., Kim, K.W., 2015b. Numerical study on comparison of steady performance between impulse and Wells turbines for wave energy conversion. In: Proceedings of the 7th Workshop for Marine Environment and Energy, Keelung, Taiwan.
  4. Halder, P., Samad, A., Kim, J.H., Choi, Y.S., 2015. High performance ocean energy harvesting turbine design e a new casing treatment scheme. Energy 86, 219-231. https://doi.org/10.1016/j.energy.2015.03.131
  5. Hyun, B.S., Moon, J.S., Hong, K., Hong, S.W., 2007. Performance prediction of impulse turbine system in various operating conditions. J. Ocean Eng. Technol. 21 (5), 9-17.
  6. Hyun, B.S., Moon, J.S., Hong, S.W., Kim, K.S., 2005. Design of impulse turbine with an end plate for wave energy conversion. In: Proceedings of the 15th International Offshore and Polar Engineering Conference, Seoul, Korea, 1, pp. 507-512.
  7. Hyun, B.S., Moon, J.S., Hong, S.W., Kim, K.S., 2006. A study on the performance of the ring-type impulse turbine for wave energy conversion. J. Korean Soc. Ocean Eng. 20 (1), 20-25.
  8. Inoue, M., Kaneko, K., Setoguchi, T., Raghunathan, S., 1986. Simulation of starting characteristics of the Wells turbine. In: ALAA/ASME 4th Fluid Mech Plasma Dyn Lasers Conf, AIAA-86-1122.
  9. Kim, T.H., Setoguchi, T., Kaeneko, K., Raghunathan, S., 2002a. Numerical investigation on the effect of blade sweep on the performance of Wells turbine. Renew. Energy 25, 235-248. https://doi.org/10.1016/S0960-1481(00)00210-X
  10. Kim, T.H., Setoguchi, T., Kinoue, Y., Kaneko, K., Inoue, M., 2002b. Hysteretic characteristics of Wells turbine for wave power conversion. In: Proceedings of the 12th International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 1, pp. 687-693.
  11. Kim, T.H., Setoguchi, T., Kinoue, Y., Kaneko, K., 2003. Hysteretic characteristics of Wells turbine for wave power conversion. Renew. Energy 28 (13), 2113-2127. https://doi.org/10.1016/S0960-1481(03)00079-X
  12. Kim, T.W., Kaneko, K., Setoguchi, T., Inoue, M., 1988. Aerodynamic performance of an impulse turbine with self-pitch-controlled guide vanes for wave power generator. In: Proceedings of the 1st KSME-JSME Thermal and Fluid Engineering Conference, Seoul, Korea, 2, pp. 133-137.
  13. Mohamed, M.H., Janiga, G., Pap, E., Thevenin, D., 2011. Multi-objective optimization of the airfoil shape of Wells turbine used for wave energy conversion. Energy 36 (1), 438-446. https://doi.org/10.1016/j.energy.2010.10.021
  14. Mohamed, M.H., Shapaan, S., 2014. Numerical optimization of axial turbine with self pitch controlled blades used for wave energy conversion. J. Energy Res. 38 (5), 592-601. https://doi.org/10.1002/er.3064
  15. Raghunathan, S., 1985. Performance of the Wells self-rectifying turbine. Aeronaut. J. 89 (1368), 369-379.
  16. Raghunathan, S., 1995. The Wells air turbine for wave energy conversion. Prog. Aerosp. Sci. 31, 335-386. https://doi.org/10.1016/0376-0421(95)00001-F
  17. Setoguchi, T., Santhakumar, S., Maeda, H., Takao, M., Kaneko, K., 2001. A review of impulse turbine for wave energy conversion. Renew. Energy 23, 261-292. https://doi.org/10.1016/S0960-1481(00)00175-0
  18. Setoguchi, T., Santhakumar, S., Takao, M., Kim, T.H., Kaneko, K., 2003a. A modified Wells turbine for wave energy conversion. Renew. Energy 28, 79-91. https://doi.org/10.1016/S0960-1481(02)00006-X
  19. Setoguchi, T., Takao, M., Itakura, K., Mohammad, M., Kaneko, K., 2003b. Effect of rotor geometry on the performance of Wells turbine. In: Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, 1, pp. 374-381.
  20. Takao, M., Kinoue, Y., Setoguchi, T., Kaneko, K., Nagata, S., 2006. Improvement of Wells turbine performance by means of end plate. Trans. Jpn. Soc. Mech. Eng. B 72, 2381-2385. https://doi.org/10.1299/kikaib.72.2381
  21. Takao, M., Setoguchi, T., 2012. Air turbines for wave energy conversion. Int. J. Rotating Mach. 1, 1-11.
  22. Takao, M., Setoguchi, T., Kim, T.H., Kaneko, K., Inoue, M., 2001. The performance of a Wells turbine with 3D guide vanes. Int. J. Offshore Polar Eng. 11 (1), 72-76.
  23. Thakker, A., Dhanasekaran, T.S., 2003. Computed effects of tip clearance on performance of impulse turbine for wave energy conversion. Renew. Energy 29 (4), 529-547. https://doi.org/10.1016/j.renene.2003.09.007
  24. Thakker, A., Dhanasekaran, T.S., 2005. Experimental and computational analysis on guide vane losses of impulse turbine for wave energy conversion. Renew. Energy 30 (9), 1359-1372. https://doi.org/10.1016/j.renene.2004.10.013
  25. Thakker, A., Dhanasekaran, T.S., Ryan, J., 2005. Experimental studies on effect of guide vane shape on performance of impulse turbine for wave energy conversion. Renew. Energy 30 (15), 2203-2219. https://doi.org/10.1016/j.renene.2005.02.002

Cited by

  1. Exploration of power take off in wave energy converters with two-body interaction vol.7, pp.2, 2017, https://doi.org/10.12989/ose.2017.7.2.089
  2. Energy balance analysis method in oscillating type wave converter vol.3, pp.3, 2016, https://doi.org/10.1007/s40722-017-0081-y
  3. Flow Control in Wells Turbines for Harnessing Maximum Wave Power vol.18, pp.2, 2016, https://doi.org/10.3390/s18020535
  4. Mejora de la Potencia Obtenida en Plantas de Generación Undimotriz basadas en Columna de Agua Oscilante vol.15, pp.2, 2016, https://doi.org/10.4995/riai.2017.8831
  5. Design Optimisation of a Unidirectional Centrifugal Radial-Air-Turbine for Application in OWC Wave Energy Converters vol.12, pp.14, 2016, https://doi.org/10.3390/en12142791
  6. Practical Method for Performance Prediction of Impulse Turbine for OWC-type Wave Energy Converter vol.23, pp.1, 2016, https://doi.org/10.7846/jkosmee.2020.23.1.23
  7. Nature-inspired design of a turbine blade harnessing wave energy vol.234, pp.5, 2016, https://doi.org/10.1177/0957650919874620
  8. Numerical and experimental study on hydrodynamic performance of multi-level OWEC vol.10, pp.4, 2016, https://doi.org/10.12989/ose.2020.10.4.359
  9. Radiused Edge Blade Tip for a Wider Operating Range in Wells Turbine vol.46, pp.3, 2016, https://doi.org/10.1007/s13369-020-05185-z