DOI QR코드

DOI QR Code

Characteristic Changes of Swine Manure by Air Suction Composting System

돈분 퇴비화 시 공기 흡입 시스템에 따른 퇴비화 특성 변화

  • Lee, Dong-jun (National Institute of Animal Science, RDA) ;
  • Kim, Jung Kon (National Institute of Animal Science, RDA) ;
  • Jeong, Kwang-Hwa (National Institute of Animal Science, RDA) ;
  • Cho, Won-Mo (National Institute of Animal Science, RDA) ;
  • Ravindran, B. (National Institute of Animal Science, RDA)
  • 이동준 (농촌진흥청 국립축산과학원) ;
  • 김중곤 (농촌진흥청 국립축산과학원) ;
  • 정광화 (농촌진흥청 국립축산과학원) ;
  • 조원모 (농촌진흥청 국립축산과학원) ;
  • Received : 2016.08.19
  • Accepted : 2016.09.05
  • Published : 2016.09.30

Abstract

The objective of this study was to investigate the variations of physico-chemical properties during the swine manure composting, sawdust as the bulking agent was composted at different points (Top layer, Side of middle layer, Bottom layer). Air suction system with constant bottom aeration in bench scale reactors (30 L). The highest temperature was reached in the range of $58^{\circ}C$ to $62^{\circ}C$ on $3^{rd}$ day and this thermophilic phase (> $50^{\circ}C$) was continued for 3 days in all the treatment mixtures. However, the temperature was gradually decreased to room temperature at the end of 60 day composting process. Except control, the discharged ammonia ($NH_3$) was a maximum in the treatment order of Top layer>Bottom layer>Side of middle layer as 500 ppm, 162 ppm and 120 ppm, respectively, on the $4^{th}$ day and showing that Top layer point Air suction produce much more ammonia content than the other point. During the composting process, the total Kjeldahl nitrogen (TKN) was gradually increased due to the mass loss in the composting mixtures. At the same time, C/N ratio was decreased to Top layer, 13; Side of middle layer, 12 and Bottom layer, 13 at Air suction points. The significant reduction of C/N ratio in all different air suction system when manure was matured. The $NH_4-N$ to $NO_3-N$ ratio was recorded as 10.52 at the initial stage of the compost mixtures and reduced to 0.97 (Top layer), 0.70 (Side of middle layer), 3.2 (Bottom layer) because of manure decomposition. The overall results revealed that Top layer and Side of middle layer Air suction is a suitable option when compared other point for high quality composts.

본 연구는 돈분 퇴비화 시 공기흡입 시스템을 적용한 반응기 내 퇴비의 이화학적 성상을 조사하기 위하여 실시되었다. 본 연구에서는 톱밥을 수분조절재로 이용하여 돼지분뇨와 적절하게 혼합한 후, 총 용적 30 L 크기의 플라스틱 재질 반응기에서 실험을 수행하였다. 공기펌프를 이용하여 반응기 하단부에서 공기를 주입하였으며, 진공흡입펌프를 이용하여 반응기 상단부, 중앙 측면부, 하단부에서 각각 공기를 흡입 할 수 있게 설비하였다. 온도의 경우, 퇴비화 개시 후 3일 째에 $58^{\circ}C{\sim}62^{\circ}C$로 가장 높게 관찰되었으며, 모든 시험구가 3일간 $50^{\circ}C$ 이상의 온도를 유지하는 것을 관찰할 수 있었다. 퇴비의 온도는 점차 안정화 되어 60일 이후 대기 온도와 비슷하게 감소했다. 퇴비단 표면에서 발생하는 암모니아는 대조구를 제외하고 퇴비화 개시 4일 째에 각각 상부흡입조건 : 500 ppm, 하부흡입조건 162 ppm, 중앙 측면흡입조건 120 ppm 순으로 가장 높은 발생량이 조사되었다. 퇴비 표면에서 발생한 암모니아의 경우, 상부흡입 처리구가 타 처리구에 비해 상대적으로 높은 암모니아 발생량을 보였다. 총 켈달질소 함량 (TKN)은 퇴비단의 질량 감소에 의해 점점 증가하는 것을 관찰할 수 있었고, C/N비는 초기 퇴비단이 23 이었으며, 퇴비화가 진행되면서 점차 감소해 최종적으로는 상부흡입조건 13, 중앙 측면흡입조건 12, 하부흡입 13으로 관찰되었다. $NH_4-N$$NO_3-N$의 비율은 퇴비화 개시 시 10.52였으며, 점차 감소하여 퇴비화 종료일에 상부흡입조건 0.97, 중앙 측면흡입조건 0.70, 하부흡입조건 3.2로 관찰되었다. 결과적으로 상부흡입조건과 중앙 측면흡입 조건이 양질 퇴비를 만들기 위한 최적의 조건인 것으로 관찰되었다.

Keywords

References

  1. Korean Ministry of Agriculture, Food and Rural Affair, "Yield of livestock manure in South Korea" (2016).
  2. The Department of Environment of South Korea, "Standard Design for Livestock Manure Treatment Facility" (2009).
  3. Jeong, K. H., Kang, Ho., Kim, T. l., Park, C. H., Yang, C. B., "Effect of Aeration on the Physicochemical Characteristics of Livestock Feces Composting during Composting Period", Journal of Korea Organic Resource Recycling Association, 11(4), pp. 57-65. (2003).
  4. Hong, J. H., Matsuda, J., Ikeuchi, Y., "A study on Improvement of Animal Composting Operation in Korea", Journal of the Korean Society for Agricultural Machinery, 9(1), pp. 62-70. (1984).
  5. Choi, K. H., Park, S. H and Zong, M. S., "Composting of Swine Feces Using Sawdust, Rice Straw, Rice Hull or Newspaper as a Bulking Material", Kor. J. Env. Hlth. Soc., 21(1), pp. 56-67. (1995).
  6. Yasuyuki Fukumoto, Takashi Osada, Dai Hanajima, Kiyonori Haga, "Patterns and Quantities of $NH_3$, $N_2O$ and $CH_4$ Emissions during Swine Manure Composting Without Forced Aeration-Effect of Compost Pile Scale", Journal of Bioresource Technology, 89(2), pp. 109-114. (2003). https://doi.org/10.1016/S0960-8524(03)00060-9
  7. Chitsan Lin, "A Negative-Pressure Aeration System for Composting Food Waste", Journal of Bioresource Technology, 99(16), pp. 7651-7656. (2008). https://doi.org/10.1016/j.biortech.2008.01.078
  8. Haug, R. T., The Practical Handbook of Composting engineering, Lewis Publishers. INC. Ann. Arbor(1993)
  9. Miller, F. C., Thermodynamic and Matric Water Potential Analysis in Field and Laboratory Scale Composting Ecosystem, PhD dissertation, Rutgers University, University Microfilms, Ann Arbor, MI. (1985).
  10. Hansen, R. C., Manel, K. M., Keener, H. M and Hoitink, H. A. J., "The Composting Process-A Natural way to Recycle Waste", OSUE., Bulletin 792, The Ohio State University. Columbus, OH (1995).
  11. Miller, F. C. and Finstein, M. S., "Materials Balance in the Composting of Wastewater Sludge as Affected by Process Control", J. Wat. Pollut. Contr. Fed., 57(2), pp. 122-127. (1985).
  12. Hong, J. H., "Composting Agricultural Waste", Journal of the Korean Society for Agricultural Machinery, 26(1), pp. 67-73. (2001).
  13. Lee, J. T., Nam, Y. G., Lee, J. I., "Change of Physico-chemical Properties and Microflora of Pig Manure due to composting with some Bulking Agents", Korean journal of Soil Science and Fertilizer, 34(2), pp. 134-144. (2001).
  14. Inbar, Y., Hadar, Y and Chen, Y., "Recycling of cattle manure : The Composting Process and Characterization of Maturity", J. Environ. Qual., 22(4) pp. 857-863. (1993). https://doi.org/10.2134/jeq1993.00472425002200040032x
  15. Jeong, K. H., Kang, H., Kim, T. I, Park, C. H., Yang, C. B., "Effect of aeration on the Physicochemical Characteristics of Livestock Feces Compost during Composting Period", J. Organic Resource Recycling Association, 11(4), pp. 57-65. (2003).
  16. Dewes, Th., "Nitrogen Losses From Manure Heaps. : Nitrogen Leaching in Ecological Agriculture", A B Academic Publishers, Great Britain, pp. 309-317. (1995).
  17. Kim, T. I., Song, J. I., Yang, C. B., Kim, M. K., "Studies on a Factor Affecting Composts Maturity During Composting of Swine Manure", J. Anim. Sci. & Technol. (Kor.), 46(2), pp. 261-272. (2004). https://doi.org/10.5187/JAST.2004.46.2.261
  18. Riffaldi, R., Levi-Minzi, R., Pera, A. and Bertoldi, M. de., "Evaluation of Composting Maturity by Means of Chemical and Microbial Analysis", J. Waste manage. Res., 4(4), pp. 387-396. (1986). https://doi.org/10.1177/0734242X8600400157
  19. Bernal, M. P., Navarro, A. F., Sanchez-Monedero, M. A., Roig, A. and Cegarra, J., "Influence of Sewage Sludge Compost Stability and Maturity on Carbon and Nitrogen Mineralization in Soil", J. Soil Biology and Biochemistry, 30(3), pp. 305-313. (1998). https://doi.org/10.1016/S0038-0717(97)00129-6
  20. Bernal, M. P., Alburquerque, J. A., Moral, R., "Composting of Animal Manures and Chemical Criteria for Composting Maturity Assessment", A review, Bioresource Technology, 100(22), pp. 5444-5453. (2009). https://doi.org/10.1016/j.biortech.2008.11.027
  21. Rui Guo, Guoxue Li, Tao Jiang, Frank Schuchardt, Tongbin Chen, Yuanqiu Zhao, Yujin Shen, "Effect of Aeration Rate, C/N ratio and Moisture Content on the Stability and Maturity of Compost", Bioresource Technology, 112 pp. 171-178. (2012). https://doi.org/10.1016/j.biortech.2012.02.099