DOI QR코드

DOI QR Code

Performance improvement of underwater acoustic communication using ray-based blind deconvolution in passive time reversal mirror

수동형 시역전 기반의 음선 기반 블라인드 디컨볼루션 기법을 이용한 수중음향통신 성능 개선

  • 오세현 (한국해양대학교 해양과학기술전문대학원) ;
  • 변기훈 (한국해양대학교 해양과학기술전문대학원) ;
  • 김재수 (한국해양대학교 해양공학과)
  • Received : 2016.07.18
  • Accepted : 2016.09.20
  • Published : 2016.09.30

Abstract

This paper presents the results for the performance improvement of underwater communication in a passive time reversal mirror (PTRM) using ray-based blind deconvolution (RBD). In conventional PTRM, the signal to be recovered is found from matched-filtering the received probe signal. However, the communication performance is degraded because the time-varying impulse response for each data frame is not reflected in the received probe signal. In this study, the time-variant transfer function is estimated from each received data frame using RBD, and the estimated time-variant transfer function is then used to recover the data signal using PTRM. The results from the experimental data show that the suggested method improves the communication performance when comparing with the conventional PTRM.

본 논문은 음선 기반 블라인드 디컨볼루션 기법을 이용한 수동형 시역전의 통신성능 향상에 대한 결과를 제시한다. 기존의 수동형 시역전에서 복원되는 신호는 수신된 탐침신호의 정합필터를 통해 구해진다. 하지만 수신된 탐침신호는 각 데이터 프레임의 채널 시변동을 반영하지 못하므로 복원된 신호의 통신 성능은 저하된다. 본 연구에서는 음선 기반 블라인드 디컨볼루션 기법을 이용하여 각 데이터 프레임의 채널 시변동이 반영된 전달함수를 모두 추정하고, 추정된 전달함수를 이용하여 수동형 시역전을 수행한다. 해상실험 데이터로부터 제안한 기법이 기존의 수동형 시역전보다 향상된 통신성능 결과를 보여준다.

Keywords

References

  1. A. C. Singer, J. K. Nelson, and S. S. Kozat, "Signal processing for underwater acoustic communications," in IEEE Communications Magazine, 90-96 (2009).
  2. R. J. Urick, Principles of Underwater Sound, Third Edition (Mcgraw-Hill, New York, 1983), pp. 99-146.
  3. J. G. Proakis, and M. Salehi, Digital Communications (McGraw-Hill, New York, 2008), pp. 160-688.
  4. M. J. Eom, J. S. Park, Y. H. Ji, and J. S. Kim, "Mitigation of inter-symbol interference in underwater acoustic communication using spatial filter" (in Korean), J. Acoust. Soc. Kr. 33, 48-53 (2014). https://doi.org/10.7776/ASK.2014.33.1.048
  5. W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, " Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror," J. Acoust. Soc. Am. 103, 25-40 (1998). https://doi.org/10.1121/1.423233
  6. G. F. Edelmann, T. Akal, W. S. Hodgkiss, S. Kim, W. A. Kuperman, and H. C. Song, "An initial demonstration of underwater acoustic communication using time reversal," IEEE J. Ocean. Eng. 27, 602-609 (2002). https://doi.org/10.1109/JOE.2002.1040942
  7. M. J. Eom, J. S. Kim, J. H. Cho, H. Y. Kim, and I. Sung, "Algorithm and experimental verification of underwater acoustic communication based on passive time-reversal mirror" (in Korean), J. Acoust. Soc. Kr. 33, 392-399 (2014). https://doi.org/10.7776/ASK.2014.33.6.392
  8. M. J. Eom, S. H. Oh, J. S. Kim, and S. M. Kim, "Algorithm and experimental verification of underwater acoustic communication based on passive time-reversal mirror in multiuser environment" (in Korean), J. Acoust. Soc. Kr. 35, 167-174 (2016). https://doi.org/10.7776/ASK.2016.35.3.167
  9. J. R. Yoon, M. K. Park, and Y. J. Ro, "Bit error parameters on passive phase conjugation underwater acoustic communication" (in Korean), J. Acoust. Soc. Kr. 24, 454-461 (2005).
  10. H. S. Kim, Y. S. Kwon, I. S. Lee, J. H. Chung, and S. I. Kim, "Analysis of time reversal transmission performance for underwater communications" (in Korean), J. Acoust. Soc. Kr. 28, 213-221 (2009).
  11. K. C. Shin, Y. H. Byun, and J. S. Kim, "Theoretical development and experimental investigation of underwater acoustic communication for multiple receiving locations based on the adaptive time-reversal processing" (in Korean), J. Acoust. Soc. Kr. 25, 239-245 (2006).
  12. K. G. Sabra, H. C. Song and D. R. Dowling, "Ray-based blind deconvolution in ocean sound channels," J. Acoust. Soc. Am. 127, EL42-47 (2010). https://doi.org/10.1121/1.3284548
  13. S. H. Byun and K. G. Sabra, "Passive characterization of underwater sound channel using blind deconvolution of ship noise" (in Korean), 31th Underwater Acoustics Symposium of J. Acoust. Soc. Kr. 35 (2016).
  14. S. H. Abadi, D. Rouseff, and D. R. Dowling, "Blind deconvolution for robust signal estimation and approximate source localization," J. Acoust. Soc. Am. 131, 2599-2610 (2012). https://doi.org/10.1121/1.3688502
  15. G. H. Byun, S. H. Oh, and J. S. Kim, "Passive characterization of underwater sound channel using blind deconvolution of ship noise," in Proc. the SAVEX15 Workshop of J. Acoust. Soc. Kr. 13 (2016).
  16. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akal, and M. Stevenson, "Spatial diversity in passive time reversal communications," J. Acoust. Soc. Am. 120, 2067-2076 (2006). https://doi.org/10.1121/1.2338286
  17. K. G. Sabra and D. R. Dowling, "Blind deconvolution in ocean waveguides using artificial time reversal," J. Acoust. Soc. Am. 116, 262-271 (2004). https://doi.org/10.1121/1.1751151
  18. S. H. Oh, H. S. Kim, J. S. Kim, J. H. Cho, J. H. Chung, and H. C. Song, "Performance analysis of underwater acoustic communication systems using underwater channel simulation tool" (in Korean), J. Acoust. Soc. Kr. 31, 373-383 (2012). https://doi.org/10.7776/ASK.2012.31.6.373