DOI QR코드

DOI QR Code

Effects of Molecular Weights of Sodium Hyaluronate on the Collagen Synthesis, Anti-inflammation and Transdermal Absorption

히알루론산나트륨의 분자량 크기에 따른 Collagen 합성, 항염증 및 피부 흡수에 미치는 영향

  • 신은지 (바이오스트림테크놀러지스(주)) ;
  • 박주웅 (바이오스트림테크놀러지스(주)) ;
  • 최지원 (가톨릭대학교 생명공학과) ;
  • 서정연 (가톨릭대학교 생명공학과) ;
  • 박용일 (바이오스트림테크놀러지스(주))
  • Received : 2016.07.18
  • Accepted : 2016.08.31
  • Published : 2016.09.30

Abstract

In this study, we examined the effects of various molecular weights (1, 10, 50, 100, 660, and 1500 kDa) of sodium hyaluronate (HA), which were prepared by enzyme hydrolysis, on the collagen synthesis, anti-inflammation and skin absorption. These HA did not significantly affect the viability of human dermal fibroblast Hs68 cells. Among them, 1500 kDa, 50 kDa HA most significantly increased collagen production by 59%, and 50% in the Hs 68 cells, respectively. Whereas 1500 and 660 kDa HA hardly pass through mouse transdermis membrane, lower molecular weights (1, 10, or 50 kDa) of HA showed time-dependent increase in skin permeation. HA of 50 kDa showed highest anti-inflammatory effects by reducing nitric oxide and tumor necrosis factor-${alpha}$ production in the RAW 264.7 cells, comparing to other HA (1, 10, and 100 kDa HA). Recently, there is no report about anti-wrinkle and anti-inflammatory effects and skin permeation of different molecular weights HA (1, 10, 50, 100, 660 and 1500 kDa), which were produced by enzyme hydrolysis. These results suggested that 50 kDa HA can be potent candidates for the development of effective anti-aging and anti-wrinkle cosmetic agents. The results of this study demonstrated that among those HA with different molecular weights, 50 kDa HA showed highest anti-inflammatory activity, significant capability to induce collagen synthesis and high level of skin permeation.

본 연구에서는 히알루론산나트륨(sodium hyaluronate, HA)을 효소 분해하여 분자량 크기(1, 10, 50, 100, 660, 및 1500 kDa) 별로 제조한 뒤 콜라겐 합성 및 항염증 활성에 미치는 영향과 피부투과도를 조사하였다. 이들 HA는 인간피부세포인 Hs68 세포에 세포독성을 나타내지 않았다. 콜라겐 생합성능은 1500 kDa, 50, kDa HA가 각각 59, 50%로 콜라겐 생합성 촉진능이 우수한 것으로 나타났다. 분자량 크기에 따른 HA의 피부투과도를 측정한 결과 660 또는 1500 kDa의 HA은 2% 미만의 미미한 투과율을 보였으나, 저분자 HA (1, 10, 또는 50 kDa)은 시간이 지남에 따라 투과율이 증가하는 것을 확인하였다. 마우스 대식세포인 RAW 264.7 세포에서 HA 분자량 크기에 따른 항염증 효과를 확인한 결과, 50 kDa HA가 농도 의존적으로 nitric oxide 및 tumor necrosis factor-${alpha}$ 합성을 저해하여 다른 분자량의 HA (1, 10, 및 100 kDa)에 비해 가장 큰 항염증 효능을 나타냈다. 현재까지 효소(hyaluronidase) 처리하여 제조된 다양한 크기의 분자량(1, 10, 50, 100, 660, 1500 kDa)의 HA 중 50 kDa HA가 collagen의 합성, 항염증 및 피부 흡수도에 대한 종합적인 평가를 한 사례는 없었다. 따라서 이러한 연구결과는 50 kDa의 HA가 인간피부세포에서 콜라겐 합성을 증진시키고, 피부 투과율을 높으며 피부 주름을 유발하는 염증반응을 억제함으로써 피부노화 및 주름 개선용 화장품소재로 개발될 수 있는 가능성을 보여준다.

Keywords

References

  1. J. Necas, L. Bartosikova, P. Brauner, and J. Kolar, Hyaluronic acid (hyaluronan): a review, Vet. Med., 53(8), 397 (2008). https://doi.org/10.17221/1930-VETMED
  2. S. I. Lamberg and A. C. Stoolmiller, Glycosaminoglycans. A biochemical and clinical review, J. Invest. Dermatol., 63(6), 433 (1974). https://doi.org/10.1111/1523-1747.ep12680346
  3. R. Tammi, J. A. Ripellino, R. U. Margolis, and M. Tammi, Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe, J. Invest. Dermatol., 90(3), 412 (1988). https://doi.org/10.1111/1523-1747.ep12456530
  4. J. H. Poulsen and M. K. Cramers, Determination of hyaluronic acid, dermatan sulphate, heparan sulphate and chondroitin 4/6 sulphate in human dermis, and a material of reference, Scand. J. Clin. Lab. Invest., 42(7), 545 (1982). https://doi.org/10.3109/00365518209168127
  5. R. Fleischmajer, J. S. Perlish, and R. I. Bashey, Human dermal glycosaminoglycans and aging, Biochim. Biophys. Acta, Gen. Subj., 279(2), 265 (1972). https://doi.org/10.1016/0304-4165(72)90142-0
  6. Y. Tokita and A. Okamoto, Hydrolytic degradation of hyaluronic acid, Polym. Degrad. Stab., 48(2), 269 (1995). https://doi.org/10.1016/0141-3910(95)00041-J
  7. J. A. Alkrad, Y. Mrestani, D. Stroehl, S. Wartewig, and R. Neubert, Characterization of enzymatically digested hyaluronic acid using NMR, Raman, IR, and UV-vis spectroscopies, J. Pharm. Biomed. Anal., 31(3), 545 (2003). https://doi.org/10.1016/S0731-7085(02)00682-9
  8. K. H. Kim, K. T. Kim, Y. H. Kim, G. Kim, C. S. Han, S. H. Park, and B. Y. Lee, Preparation of oligo hyaluronic acid by hydrolysis and its application as a cosmetic ingredient, J. Soc. Cosmet. Sci. Korea, 33(3), 189 (2007).
  9. Y. S. Soh, Hyaluronic acid ; properties and applications, Polym. Kor., 12(6), 484 (1988).
  10. A. Sattar, P. Rooney, S. Kumar, D. Pye, D. C. West, I. Scott, and P. Ledger, Application of angiogenic oligosaccharides of hyaluronan increases blood vessel numbers in rat skin, J. Invest. Dermatol., 103(4), 576 (1994). https://doi.org/10.1111/1523-1747.ep12396880
  11. J. Courtois, Oligosaccharides from land plants and algae: production and applications in therapeutics and biotechnology, Curr. Opin. Microbiol., 12(3), 261 (2009). https://doi.org/10.1016/j.mib.2009.04.007
  12. N. Motohashi, Y. Nakamichi, I. Mori, H. Nishikawa, and J. Umemoto, Analysis by high performance gel permeation chromatography of hyaluronic acid in animal skins and rabbit synovial fluid, J. Chromatogr. A, 435(2), 335 (1988). https://doi.org/10.1016/S0021-9673(01)82193-2
  13. H. Bothner, T. Waaler, and O. Wik, Limiting viscosity number and weight average molecular weight of hyaluronate samples produced by heat degradation, Int. J. Biol., 10(5), 287 (1988).
  14. B. G. Park, C. W. Lee, J. W. Park, Y. Cui, Y. S. Park, and W. S. Shin, Enzymatic fragments of hyaluronan inhibit adipocyte differentiation in 3T3-L1 pre-adipocytes, Biochem. Biophys. Res. Commun., 467(4), 623 (2015). https://doi.org/10.1016/j.bbrc.2015.10.104
  15. C. W. Lee, J. Y. Seo, J. W. Choi, J. Lee, J. W. Park, J. Y. Lee, K. Y. Hwang, Y. S. Park, and Y. I. Park, Potential anti-osteoporotic activity of low-molecular weight hyaluronan by attenuation of osteoclast cell differentiation and function in vitro, Biochem. Biophys. Res. Commun., 449(4), 438 (2014). https://doi.org/10.1016/j.bbrc.2014.05.050
  16. P. Ghosh, The role of hyaluronic acid (hyaluronan) in health and disease: interactions with cells, cartilage and components of synovial fluid, Clin. Exp. Rheumatol., 12(1), 75 (1994).
  17. M. Brincat, S. Kabalan, J. W. Studd, C. F. Moniz, J. de Trafford, and J. Montgomery, A study of the decrease of skin collagen content, skin thickness, and bone mass in the postmenopausal woman, Obstet. Gynecol., 70(6), 840 (1987).
  18. B. A. Gilchrest and M. Yaar, Ageing and photoageing of the skin: observations at the cellular and molecular level, Br. J. Dermatol., 127(41), 25 (1992). https://doi.org/10.1111/j.1365-2133.1992.tb16984.x
  19. M. Inui, M. Ooe, K. Fujii, H. Matsunaka, M. Yoshida, and M. Ichihashi, Mechanisms of inhibitory effects of CoQ10 on UVB-induced wrinkle formation in vitro and in vivo, Biofactors, 32(1), 237 (2008). https://doi.org/10.1002/biof.5520320128
  20. D. C. Shin, G. C. Kim, S. Y. Song, H. J. Kim, J. C. Yang, Y. H. Lee, and B. A. Kim, Antiaging activity of mixed extracts from Korean medicinal herbs on HS68 skin fibroblast. Korea J. Herbol., 29(2), 39 (2014) https://doi.org/10.6116/KJH.2014.29.2.39
  21. L. Ritti and G. J. Fisher, UV-light-induced signal cascades and skin aging, Ageing Res. Rev., 1(4), 705 (2002). https://doi.org/10.1016/S1568-1637(02)00024-7
  22. R. Kohen, Skin antioxidants: their role in aging and in oxidative stress-new approaches for their evaluation, Biomed. Pharmacother., 53(4), 181 (1999). https://doi.org/10.1016/S0753-3322(99)80087-0
  23. S. K. Katiyar, F. Afaq, A. Perez, and H. Mukhtar, Green tea polyphenol (-)epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation- induced oxidative stress, Carcinogenesis, 22(2), 287 (2001). https://doi.org/10.1093/carcin/22.2.287
  24. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65(1), 55 (1983). https://doi.org/10.1016/0022-1759(83)90303-4
  25. G. W. Lee, S. M. Park, Y. C. Yoo, and Y. H. Cho, Effect of Ponciri fructus extracts fermented with Ganoderma lucidum on the collagen synthesis and expression of matrix metalloproteinase-1, KSBB Journal, 28(2), 106 (2013). https://doi.org/10.7841/ksbbj.2013.28.2.106
  26. G. S. Lee, D. H. Lee, K. B. Kim, H. J. Ko, and H. B. Pyo, Synergistic effects of n-methyl-2-pyrrolidone on skin permeation of ahydrophobic active ingredient, J. Soc. Cosmet. Sci. Korea, 36(2), 115 (2010).
  27. S. N. Park, M. S. Lim, M. A. Park, S. S. Kwon, and S. B. Han, Transdermal delivery of quercetin using elastic liposomes: preparation, characterization and in vitro skin permeation study, Polym. Kor., 36(6), 705 (2012). https://doi.org/10.7317/pk.2012.36.6.705
  28. M. H. Yeom, J. Y. Lee, j. S. Kim, C. W. Park, D. H. Kim, and H. K. Kim, The anti-aging effects of Korean ginseng berry in the skin, Kor. J. Pharmacogn., 41(1), 26 (2010).
  29. A. M. Parfitt, L. S. Simon, A. R. Villanueva, and S. M. Krane, Procollagen type I carboxy-terminal extension peptide in serum as a marker of collagen biosynthesis in bone. Correlation with Iliac bone formation rates and comparison with total alkaline phosphatase, J. Bone Miner. Res., 2(5), 427 (1987). https://doi.org/10.1002/jbmr.5650020510
  30. H. S. Talwar, C. E. Griffiths, G. J. Fisher, T. A. Hamilton, and J. J. Voorhees, Reduced type I and type III procollagens in photodamaged adult human skin, J. Invest. Dermatol., 105(2), 285 (1995). https://doi.org/10.1111/1523-1747.ep12318471
  31. H. K. Hong, S. K. Lee, Y.S. Song, D. S. Kim, S. Eom, H. E. Kim, D. W. Lee, and G. S. Khang, Biodisc regeneration using annulus fibrosus cell with hyaluronic acid impregnated small intestinal submucosa sponge, Polym. Kor., 34(3), 282 (2010). https://doi.org/10.7317/pk.2010.34.3.282
  32. M. Farwick, P. Lersch, and G. Strutz, Low molecular weight hyaluronic acid: its effects on epidermal gene expression & skin ageing, SOFW Journal, 134(11), 17 (2008).
  33. F. Wang, L. A. Garza, S. Kang, J. Varani, J. S. Orringer, G. J. Fisher, and J. J. Voorhees, In vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin, Arch. Dermatol., 143(2), 155 (2007). https://doi.org/10.1001/archderm.143.2.155
  34. C. Ke, L. Sun, D. Qiao, D. Wang, and X. Zeng, Antioxidant acitivity of low molecular weight hyaluronic acid, Food Chem. Toxicol., 49(10), 2670 (2011). https://doi.org/10.1016/j.fct.2011.07.020
  35. D. B. Lyle, J. C. Breger, L. F. Baeva, J. C. Shallcross, C. N. Durfor, N. S. Wang, and J. J. Langone, Low molecular weight hyaluronic acid effects on murine macrophage nitric oxide production, J. Biomed. Mater. Res. A, 94(3), 893 (2010).
  36. D. L. Duval, D. R. Miller, J. Collier, and R. E. Billings, Characterization of hepatic nitric oxide synthase: identification as the cytokine-inducible form primarily regulated by oxidants, Mol. Pharmacol., 50(2), 277 (1996).
  37. T. Lawrence, D. W. Gilroy, P. R. Colville-Nash, and D. A. Willoughby, Possible new role for NF-kappaB in the resolution of inflammation, Nat. Med., 7(12), 1291 (2001). https://doi.org/10.1038/nm1201-1291
  38. I. Huk, V. Brovkovych, J. Nanobash Vili, G. Weigel, C. Neumayer, L. Partyka, S. Patton, and T. Malinski, Bioflavonoid quercetin scavenges superoxide and increases nitric oxide concentration in ischaemia -reperfusion injury: an experimental study, Br. J. Surg., 85(8), 1080 (1998). https://doi.org/10.1046/j.1365-2168.1998.00787.x
  39. G. S. Hotamisligil, Inflammation and metabolic disorders, Nature, 444(7121), 860 (2006). https://doi.org/10.1038/nature05485
  40. W. Fiers, Tumor necrosis factor characterization at the molecular, cellular and in vivo level, FEBS Letters, 285(2), 199 (1991). https://doi.org/10.1016/0014-5793(91)80803-B
  41. B. B. Aggarwal, Signalling pathways of the TNF superfamily: a double-edged sword, Nat. Rev. Immunol., 3(9), 745 (2003). https://doi.org/10.1038/nri1184
  42. P. Lacy and J. L. Stow, Cytokine release from innate immune cells: association with diverse membrane trafficking pathways, Blood, 118(1), 9 (2011). https://doi.org/10.1182/blood-2010-08-265892
  43. J. Y. Seo, C. W. Lee, D. J. Choi, J. Lee, J. Y. Lee, and Y. I. Park, Ginseng marcderived low molecular weight oligosaccharide inhibits the growth of skin melanoma cells via activation of RAW 264.7 cells, Int. Immunopharmacol., 29(2), 344 (2015). https://doi.org/10.1016/j.intimp.2015.10.031
  44. J. S. Kim, H. Y. Kwon, W. H. Choi, C. Y. Jeon, J. I. Kim, J. Kim, J. Y. Lee, Y. S. Kim, and J. B. Park, Phagocytosis of serum and IgG-opsonized zymosan particles induces apoptosis through superoxide but not nitric oxide in macrophage J774A.1, Exp. Mol. Med., 35(3), 211 (2003). https://doi.org/10.1038/emm.2003.29
  45. M. Essendoubi, C. Gobinet, R. Reynaud, and J. F. Angiboust, M. Manfait, and O. Piot, Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy, Skin Res. Technol., 22(1), 55 (2016). https://doi.org/10.1111/srt.12228
  46. Korea, 1,020,110,031,094 (2011).
  47. S. 1. Kim, J. Y. Na, K. B. Song, D. S. Choi, J. H. Kim, Y. B. Kwon, and J. Kwon, Protective effect of ginsenoside Rb1 on hydrogen peroxide-induced oxidative stress in rat articular chondrocytes, J. Ginseng Res., 36(2), 161 (2012). https://doi.org/10.5142/jgr.2012.36.2.161
  48. P. Chabrecek, L. Soltes, Z. Kallay, and I. Novak, Gel permeation chromatographic characterization of sodium hyaluronate and its fractions prepared by ultrasonic degradation, Chromatographia, 30(3), 201 (1990). https://doi.org/10.1007/BF02274547