DOI QR코드

DOI QR Code

Ginseng, the natural effectual antiviral: Protective effects of Korean Red Ginseng against viral infection

  • Im, Kyungtaek (College of Pharmacy, Chung-Ang University) ;
  • Kim, Jisu (College of Pharmacy, Chung-Ang University) ;
  • Min, Hyeyoung (College of Pharmacy, Chung-Ang University)
  • Received : 2015.08.04
  • Accepted : 2015.09.07
  • Published : 2016.10.15

Abstract

Korean Red Ginseng (KRG) is a heat-processed ginseng developed by the repeated steaming and air-drying of fresh ginseng. Compared with fresh ginseng, KRG has been shown to possess greater pharmacological activities and stability because of changes that occur in its chemical constituents during the steaming process. In addition to anticancer, anti-inflammatory, and immune-modulatory activities, KRG and its purified components have also been shown to possess protective effects against microbial infections. Here, we summarize the current knowledge on the properties of KRG and its components on infections with human pathogenic viruses such as respiratory syncytial virus, rhinovirus, influenza virus, human immunodeficiency virus, human herpes virus, hepatitis virus, norovirus, rotavirus, enterovirus, and coxsackievirus. Additionally, the therapeutic potential of KRG as an antiviral and vaccine adjuvant is discussed.

Keywords

References

  1. Munoz FM. Respiratory syncytial virus in infants: is maternal vaccination a realistic strategy? Curr Opin Infect Dis 2015;28:221-4. https://doi.org/10.1097/QCO.0000000000000161
  2. Song X, Chen J, Sakwiwatkul K, Li R, Hu S. Enhancement of immune responses to influenza vaccine (H3N2) by ginsenoside Re. Int Immunopharmacol 2010;10:351-6. https://doi.org/10.1016/j.intimp.2009.12.009
  3. Baek SH, Lee JG, Park SY, Bae ON, Kim DH, Park JH. Pectic polysaccharides from Panax ginseng as the antirotavirus principals in ginseng. Biomacromolecules 2010;11:2044-52. https://doi.org/10.1021/bm100397p
  4. Martin A, Lemon SM. Hepatitis A virus: from discovery to vaccines. Hepatology 2006;43:S164-72. https://doi.org/10.1002/hep.21052
  5. Nichol KL, Lind A, Margolis KL, Murdoch M, McFadden R, Hauge M, Magnan S, Drake M. The effectiveness of vaccination against influenza in healthy, working adults. N Engl J Med 1995;333:889-93. https://doi.org/10.1056/NEJM199510053331401
  6. Munos MK, Walker CL, Black RE. The effect of rotavirus vaccine on diarrhoea mortality. Int J Epidemiol 2010;39(Suppl. 1):i56-62. https://doi.org/10.1093/ije/dyq022
  7. Porter K, Babiker A, Bhaskaran K, Darbyshire J, Pezzotti P, Walker AS. Determinants of survival following HIV-1 seroconversion after the introduction of HAART. Lancet 2003;362:1267-74. https://doi.org/10.1016/S0140-6736(03)14570-9
  8. Chin'ombe N, Ruhanya V. HIV/AIDS vaccines for Africa: scientific opportunities, challenges and strategies. Pan Afr Med J 2015;20:386.
  9. Ha S-J, West EE, Araki K, Smith KA, Ahmed R. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol Rev 2008;223:317-33. https://doi.org/10.1111/j.1600-065X.2008.00638.x
  10. Kiefer D, Pantuso T. Panax ginseng. Am Fam Physician 2003;68:1539-42.
  11. Park J, Rhee D, Lee Y. Biological activities and chemistry of saponins from Panax ginseng C. A. Meyer. Phytochem Rev 2005;4:159-75. https://doi.org/10.1007/s11101-005-2835-8
  12. Jang D-J, Lee MS, Shin B-C, Lee Y-C, Ernst E. Red ginseng for treating erectile dysfunction: a systematic review. Br J Clin Pharmacol 2008;66:444-50. https://doi.org/10.1111/j.1365-2125.2008.03236.x
  13. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 2000;63:1702-4. https://doi.org/10.1021/np990152b
  14. Kim SK, Park JH. Trends in ginseng research in 2010. J Ginseng Res 2011;35:389-98. https://doi.org/10.5142/jgr.2011.35.4.389
  15. Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-74.
  16. Kim S, Lee Y, Cho J. Korean red ginseng extract exhibits neuroprotective effects through inhibition of apoptotic cell death. Biol Pharm Bull 2014;37:938-46. https://doi.org/10.1248/bpb.b13-00880
  17. Vuksan V, Sievenpipper J, Jovanovski E, Jenkins AL. Current clinical evidence for Korean red ginseng in management of diabetes and vascular disease: a Toronto's ginseng clinical testing program. J Ginseng Res 2010;34:264-73. https://doi.org/10.5142/jgr.2010.34.4.264
  18. Lim DS, Bae KG, Jung IS, Kim CH, Yun YS, Song JY. Anti-septicaemic effect of polysaccharide from Panax ginseng by macrophage activation. J Infect 2002;45:32-8. https://doi.org/10.1053/jinf.2002.1007
  19. Lee JS, Cho MK, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC, Kim KH, Lee YT, Jung YJ, et al. Ginseng diminishes lung disease in mice immunized with formalin-inactivated respiratory syncytial virus after challenge by modulating host immune responses. J Interferon Cytokine Res 2014;34:902-14. https://doi.org/10.1089/jir.2013.0093
  20. Lee JS, Lee YN, Lee YT, Hwang HS, Kim KH, Ko EJ, Kim MC, Kang SM. Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication. Nutrients 2015;7:1021-36. https://doi.org/10.3390/nu7021021
  21. Lee JS, Ko EJ, Hwang HS, Lee YN, Kwon YM, Kim MC, Kang SM. Antiviral activity of ginseng extract against respiratory syncytial virus infection. Int J Mol Med 2014;34:183-90. https://doi.org/10.3892/ijmm.2014.1750
  22. Hendley JO, Gwaltney Jr JM. Mechanisms of transmission of rhinovirus infections. Epidemiol Rev 1988;10:243-58.
  23. Seemungal T, Harper-Owen R, Bhowmik A, Moric I, Sanderson G, Message S, Maccallum P, Meade TW, Jeffries DJ, Johnston SL, et al. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;164:1618-23. https://doi.org/10.1164/ajrccm.164.9.2105011
  24. Jarjour NN, Gern JE, Kelly EAB, Swenson CA, Dick CR, Busse WW. The effect of an experimental rhinovirus 16 infection on bronchial lavage neutrophils. J Allergy Clin Immunol 2000;105:1169-77. https://doi.org/10.1067/mai.2000.106376
  25. Charles CH, Yelmene M, Luo GX. Recent advances in rhinovirus therapeutics. Curr Drug Targets Infect Disord 2004;4:331-7. https://doi.org/10.2174/1568005043340551
  26. Song JH, Choi HJ, Song HH, Hong EH, Lee BR, Oh SR, Choi K, Yeo SG, Lee YP, Cho S, et al. Antiviral activity of ginsenosides against coxsackievirus B3, enterovirus 71, and human rhinovirus 3. J Ginseng Res 2014;38:173-9. https://doi.org/10.1016/j.jgr.2014.04.003
  27. Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 2009;459:931-9. https://doi.org/10.1038/nature08157
  28. Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 1998;351:472-7. https://doi.org/10.1016/S0140-6736(97)11212-0
  29. Lee JS, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC, Kang SM. Immunomodulatory activity of red ginseng against influenza A virus infection. Nutrients 2014;6:517-29. https://doi.org/10.3390/nu6020517
  30. Chan LY, Kwok HH, Chan RW, Peiris MJ, Mak NK, Wong RN, Chan MC, Yue PY. Dual functions of ginsenosides in protecting human endothelial cells against influenza H9N2-induced inflammation and apoptosis. J Ethnopharmacol 2011;137:1542-6. https://doi.org/10.1016/j.jep.2011.08.022
  31. Yoo DG, Kim MC, Park MK, Song JM, Quan FS, Park KM, Cho YK, Kang SM. Protective effect of Korean red ginseng extract on the infections by H1N1 and H3N2 influenza viruses in mice. J Med Food 2012;15:855-62. https://doi.org/10.1089/jmf.2012.0017
  32. Park EH, Yum J, Ku KB, Kim HM, Kang YM, Kim JC, Kim JA, Kang YK, Seo SH. Red Ginseng-containing diet helps to protect mice and ferrets from the lethal infection by highly pathogenic H5N1 influenza virus. J Ginseng Res 2014;38:40-6. https://doi.org/10.1016/j.jgr.2013.11.012
  33. Yoo DG, Kim MC, Park MK, Park KM, Quan FS, Song JM, Wee JJ, Wang BZ, Cho YK, Compans RW, et al. Protective effect of ginseng polysaccharides on influenza viral infection. PLoS One 2012;7:e33678. https://doi.org/10.1371/journal.pone.0033678
  34. Yin SY, Kim HJ. A comparative study of the effects of whole red ginseng extract and polysaccharide and saponin fractions on influenza A (H1N1) virus infection. Biol Pharm Bull 2013;36:1002-7. https://doi.org/10.1248/bpb.b13-00123
  35. Quan FS, Compans RW, Cho YK, Kang SM. Ginseng and Salviae herbs play a role as immune activators and modulate immune responses during influenza virus infection. Vaccine 2007;25:272-82. https://doi.org/10.1016/j.vaccine.2006.07.041
  36. Xu ML, Kim HJ, Choi YR. Intake of korean red ginseng extract and saponin enhances the protection conferred by vaccination with inactivated influenza a virus. J Ginseng Res 2012;36:396-402. https://doi.org/10.5142/jgr.2012.36.4.396
  37. Zagury JF, Franchini G, Reitz M, Collalti E, Starcich B, Hall L, Fargnoli K, Jagodzinski L, Guo HG, Laure F. Genetic variability between isolates of human immunodeficiency virus (HIV) type 2 is comparable to the variability among HIV type 1. Proc Natl Acad Sci USA 1988;85:5941-5. https://doi.org/10.1073/pnas.85.16.5941
  38. Kanki PJ, Travers KU, Mboup S, Hsieh CC, Marlink RG, Gueye-NDiaye A, Siby T, Thior I, Hernandez-Avila M, Sankale JL, et al. Slower heterosexual spread of HIV-2 than HIV-1. Lancet 1994;343:943-6. https://doi.org/10.1016/S0140-6736(94)90065-5
  39. Requejo HI. Worldwide molecular epidemiology of HIV. Rev Saude Publica 2006;40:331-45. https://doi.org/10.1590/S0034-89102006000200023
  40. de Silva TI, Cotten M, Rowland-Jones SL. HIV-2: the forgotten AIDS virus. Trends Microbiol 2008;16:588-95. https://doi.org/10.1016/j.tim.2008.09.003
  41. Moore RD, Chaisson RE. Natural history of HIV infection in the era of combination antiretroviral therapy. AIDS 1999;13:1933-42. https://doi.org/10.1097/00002030-199910010-00017
  42. Cho YK, Sung H, Lee HJ, Joo CH, Cho GJ. Long-term intake of Korean red ginseng in HIV-1-infected patients: development of resistance mutation to zidovudine is delayed. Int Immunopharmacol 2001;1:1295-305. https://doi.org/10.1016/S1567-5769(01)00061-3
  43. Sung H, Jung YS, Cho YK. Beneficial effects of a combination of Korean red ginseng and highly active antiretroviral therapy in human immunodeficiency virus type 1-infected patients. Clin Vaccine Immunol 2009;16:1127-31. https://doi.org/10.1128/CVI.00013-09
  44. Cho YK, Lee IC, Shin YO. The effect of Korean red ginseng (KRG), zidovudine (ZDV), and the combination of KRG and ZDV on HIV-infected individuals. J Bacteriol Virol 1996;31:353-60.
  45. Kim BR, Kim JE, Sung H, Cho YK. Long-term follow up of HIV-1-infected Korean haemophiliacs, after infection from a common source of virus. Haemophilia 2015;21:e1-11. https://doi.org/10.1111/hae.12527
  46. Cho YK, Sung H, Ahn SH, Bae IG, Woo JH, Won YH, Kim DG, Kang MW. Frequency of mutations conferring resistance to nucleoside reverse transcriptase inhibitors in human immunodeficiency virus type 1-infected patients in Korea. J Clin Microbiol 2002;40:1319-25. https://doi.org/10.1128/JCM.40.4.1319-1325.2002
  47. Sung H, Kang SM, Lee MS, Kim TG, Cho YK. Korean red ginseng slows depletion of CD4 T cells in human immunodeficiency virus type 1-infected patients. Clin Diagn Lab Immunol 2005;12:497-501.
  48. Cho Y-K, Sung H, Kim TK, Lim JY, Jung YS, Kang S-M. Korean red ginseng significantly slows CD4 T cell depletion over 10 years in HIV-1 infected patients: association with HLA. J Ginseng Res 2004;28:173-82. https://doi.org/10.5142/JGR.2004.28.4.173
  49. Cho YK, Kim YB, Kim YK, Lee HJ, Oh WI. Sequence analysis of C2-V3 region of human immunodeficiency virus type 1 gp120 and its correlation with clinical significance: the effect of long-term intake of Korean red ginseng on env gene variation. J Korean Soc Microbiol 1997;32:611-23.
  50. Das SR, Jameel S. Biology of the HIV Nef protein. Indian J Med Res 2005;121:315-32.
  51. Cho YK, Jung YS, Sung H. Frequent gross deletion in the HIV type 1 nef gene in hemophiliacs treated with Korean Red Ginseng: inhibition of detection by highly active antiretroviral therapy. AIDS Res Hum Retroviruses 2009;25:419-24. https://doi.org/10.1089/aid.2008.0178
  52. Cho YK, Lim JY, Jung YS, Oh SK, Lee HJ, Sung H. High frequency of grossly deleted nef genes in HIV-1 infected long-term slow progressors treated with Korean red ginseng. Curr HIV Res 2006;4:447-57. https://doi.org/10.2174/157016206778560072
  53. Cho YK, Jung YS, Sung H, Sim MK, Kim YK. High frequency of gross deletions in 50 LTR/gag and nef genes in patients infected with CRF02_AG of HIV type 1 who survived for over 20 years: an association with Korean red ginseng. AIDS Res Hum Retroviruses 2009;25:535-41. https://doi.org/10.1089/aid.2008.0301
  54. Cho YK, Jung YS. Dosage and duration effects of Korean red ginseng intake on frequency of gross deletions in the nef gene. J Ginseng Res 2010;34:219-26. https://doi.org/10.5142/jgr.2010.34.3.219
  55. Cho YK, Jung YS. High frequency of gross deletions in the 5' LTR and gag regions in HIV type 1-infected long-term survivors treated with Korean red ginseng. AIDS Res Hum Retroviruses 2008;24:181-93. https://doi.org/10.1089/aid.2007.0143
  56. Cho YK, Jung Y, Sung H, Joo CH. Frequent genetic defects in the HIV-1 5' LTR/gag gene in hemophiliacs treated with Korean Red Ginseng: decreased detection of genetic defects by highly active antiretroviral therapy. J Ginseng Res 2011;35:413-20. https://doi.org/10.5142/jgr.2011.35.4.413
  57. Wang HX, Ng TB. Quinqueginsin, a novel protein with anti-human immunodeficiency virus, antifungal, ribonuclease and cell-free translation-inhibitory activities from American ginseng roots. Biochem Biophys Res Commun 2000;269:203-8. https://doi.org/10.1006/bbrc.2000.2114
  58. Lam SK, Ng TB. A xylanase from roots of sanchi ginseng (Panax notoginseng) with inhibitory effects on human immunodeficiency virus-1 reverse transcriptase. Life Sci 2002;70:3049-58. https://doi.org/10.1016/S0024-3205(02)01557-6
  59. Jeong JJ, Kim B, Kim DH. Ginsenoside Rh1 eliminates the cytoprotective phenotype of human immunodeficiency virus type 1-transduced human macrophages by inhibiting the phosphorylation of pyruvate dehydrogenase lipoamide kinase isozyme 1. Biol Pharm Bull 2013;36:1088-94. https://doi.org/10.1248/bpb.b13-00013
  60. Jeong JJ, Kim B, Kim DH. Ginsenoside Rb1 eliminates HIV-1 (D3)-transduced cytoprotective human macrophages by inhibiting the AKT pathway. J Med Food 2014;17:849-54. https://doi.org/10.1089/jmf.2013.3020
  61. Kim Y, Hollenbaugh JA, Kim DH, Kim B. Novel PI3K/Akt inhibitors screened by the cytoprotective function of human immunodeficiency virus type 1 Tat. PLoS One 2011;6:e21781. https://doi.org/10.1371/journal.pone.0021781
  62. Shi J, Cao B, Zha WB, Wu XL, Liu LS, Xiao WJ, Gu RR, Sun RB, Yu XY, Zheng T, et al. Pharmacokinetic interactions between 20(S)-ginsenoside Rh2 and the HIV protease inhibitor ritonavir in vitro and in vivo. Acta Pharmacol Sin 2013;34:1349-58. https://doi.org/10.1038/aps.2013.69
  63. Lee LS, Wise SD, Chan C, Parsons TL, Flexner C, Lietman PS. Possible differential induction of phase 2 enzyme and antioxidant pathways by american ginseng, Panax quinquefolius. J Clin Pharmacol 2008;48:599-609. https://doi.org/10.1177/0091270008314252
  64. Patel J, Buddha B, Dey S, Pal D, Mitra AK. In vitro interaction of the HIV protease inhibitor ritonavir with herbal constituents: changes in P-gp and CYP3A4 activity. Am J Ther 2004;11:262-77. https://doi.org/10.1097/01.mjt.0000101827.94820.22
  65. Kukhanova MK, Korovina AN, Kochetkov SN. Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (Mosc) 2014;79:1635-52. https://doi.org/10.1134/S0006297914130124
  66. McGeoch DJ, Cook S, Dolan A, Jamieson FE, Telford EAR. Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J Mol Biol 1995;247:443-58. https://doi.org/10.1006/jmbi.1995.0152
  67. Kimberlin DW. Herpes simplex virus infections in neonates and early childhood. Semin Pediatr Infect Dis 2005;16:271-81. https://doi.org/10.1053/j.spid.2005.06.007
  68. Gupta R, Warren T, Wald A. Genital herpes. Lancet 2007;370:2127-37. https://doi.org/10.1016/S0140-6736(07)61908-4
  69. Pei Y, Du Q, Liao PY, Chen ZP, Wang D, Yang CR, Kitazato K, Wang YF, Zhang YJ. Notoginsenoside ST-4 inhibits virus penetration of herpes simplex virus in vitro. J Asian Nat Prod Res 2011;13:498-504. https://doi.org/10.1080/10286020.2011.571645
  70. Liang YY, Wang B, Qian DM, Li L, Wang ZH, Hu M, Song XX. Inhibitory effects of Ginsenoside Rb1 on apoptosis caused by HSV-1 in human glioma cells. Virol Sin 2012;27:19-25. https://doi.org/10.1007/s12250-012-3220-6
  71. Cho A, Roh YS, Uyangaa E, Park S, Kim JW, Lim KH, Kwon J, Eo SK, Lim CW, Kim B. Protective effects of red ginseng extract against vaginal herpes simplex virus infection. J Ginseng Res 2013;37:210-8. https://doi.org/10.5142/jgr.2013.37.210
  72. Perfect MM, Bourne N, Ebel C, Rosenthal SL. Use of complementary and alternative medicine for the treatment of genital herpes. Herpes 2005;12:38-41.
  73. Lee MH, Lee BH, Lee S, Choi C. Reduction of hepatitis A virus on FRhK-4 cells treated with Korean red ginseng extract and ginsenosides. J Food Sci 2013;78:M1412-5. https://doi.org/10.1111/1750-3841.12205
  74. Kramvis A, Kew M, Francois G. Hepatitis B virus genotypes. Vaccine 2005;23:2409-23. https://doi.org/10.1016/j.vaccine.2004.10.045
  75. Zhang YQ, Guo JS. Antiviral therapies for hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol 2015;21:3860-6. https://doi.org/10.3748/wjg.v21.i13.3860
  76. Kang LJ, Choi YJ, Lee SG. Stimulation of TRAF6/TAK1 degradation and inhibition of JNK/AP-1 signalling by ginsenoside Rg3 attenuates hepatitis B virus replication. Int J Biochem Cell Biol 2013;45:2612-21. https://doi.org/10.1016/j.biocel.2013.08.016
  77. Atmar RL, Estes MK. Diagnosis of noncultivatable gastroenteritis viruses, the human caliciviruses. Clin Microbiol Rev 2001;14:15-37. https://doi.org/10.1128/CMR.14.1.15-37.2001
  78. Moore MD, Goulter RM, Jaykus LA. Human norovirus as a foodborne pathogen: challenges and developments. Annu Rev Food Sci Technol 2015;6:411-33. https://doi.org/10.1146/annurev-food-022814-015643
  79. Bae J, Schwab KJ. Evaluation of murine norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human norovirus in a model of viral persistence in surface water and groundwater. Appl Environ Microbiol 2008;74:477-84. https://doi.org/10.1128/AEM.02095-06
  80. Lee MH, Lee BH, Jung JY, Cheon DS, Kim KT, Choi C. Antiviral effect of korean red ginseng extract and ginsenosides on murine norovirus and feline calicivirus as surrogates for human norovirus. J Ginseng Res 2011;35:429-35. https://doi.org/10.5142/jgr.2011.35.4.429
  81. Lee MH, Seo DJ, Kang JH, Oh SH, Choi C. Expression of antiviral cytokines in Crandell-Reese feline kidney cells pretreated with Korean red ginseng extract or ginsenosides. Food Chem Toxicol 2014;70:19-25. https://doi.org/10.1016/j.fct.2014.04.034
  82. Bernstein DI. Rotavirus overview. Pediatr Infect Dis J 2009;28:S50-3. https://doi.org/10.1097/INF.0b013e3181967bee
  83. Parashar UD, Gibson CJ, Bresse JS, Glass RI. Rotavirus and severe childhood diarrhea. Emerg Inf Dis 2006;12:304-6. https://doi.org/10.3201/eid1202.050006
  84. Victora CG, Bryce J, Fontaine O, Monasch R. Reducing deaths from diarrhoea through oral rehydration therapy. Bull World Health Organ 2000;78:1246-55.
  85. Lee JH, Shim JS, Lee JS, Kim MK, Chung MS, Kim KH. Pectin-like acidic polysaccharide from Panax ginseng with selective antiadhesive activity against pathogenic bacteria. Carbohydr Res 2006;341:1154-63. https://doi.org/10.1016/j.carres.2006.03.032
  86. Rabenau HF, Richter M, Doerr HW. Hand, foot and mouth disease: seroprevalence of Coxsackie A16 and Enterovirus 71 in Germany. Med Microbiol Immunol 2010;199:45-51. https://doi.org/10.1007/s00430-009-0133-6
  87. Chan LG, Parashar UD, Lye MS, Ong FG, Zaki SR, Alexander JP, Ho KK, Han LL, Pallansch MA, Suleiman AB, et al. Deaths of children during an outbreak of hand, foot, and mouth disease in sarawak, malaysia: clinical and pathological characteristics of the disease. For the Outbreak Study Group. Clin Infect Dis 2000;31:678-83. https://doi.org/10.1086/314032
  88. Hamaguchi T, Fujisawa H, Sakai K, Okino S, Kurosaki N, Nishimura Y, Shimizu H, Yamada M. Acute encephalitis caused by intrafamilial transmission of enterovirus 71 in adult. Emerg Infect Dis 2008;14:828-30. https://doi.org/10.3201/eid1405.071121
  89. Bruu AL. Enteroviruses: polioviruses, coxsackieviruses, echoviruses and newer enteroviruses. A practical guide to clinical virology. 2nd ed. NJ, United States: Wiley; 2003. p. 44-5.
  90. Muir P, Kammerer U, Korn K, Mulders MN, Poyry T, Weissbrich B, Kandolf R, Cleator GM, van Loon AM. Molecular typing of enteroviruses: current status and future requirements. The European Union concerted action on virus meningitis and encephalitis. Clin Microbiol Rev 1998;11:202-27.
  91. Gupta S, Markham DW, Drazner MH, Mammen PP. Fulminant myocarditis. Nat Clin Pract Cardiovasc Med 2008;5:693-706. https://doi.org/10.1038/ncpcardio1331
  92. Tracy S, Gauntt C. Group B coxsackievirus virulence. Curr Top Microbiol Immunol 2008;323:49-63.
  93. Heim A, Grumbach I, Pring-Akerblom P, Stille-Siegener M, Muller G, Kandolf R, Figulla H-R. Inhibition of coxsackievirus B3 carrier state infection of cultured human myocardial fibroblasts by ribavirin and human natural interferon-${\alpha}$. Antiviral Res 1997;34:101-11. https://doi.org/10.1016/S0166-3542(97)01028-0
  94. Wang X, Wang Y, Ren Z, Qian C, Li Y, Wang Q, Zhang Y, Zheng L, Jiang J, Yang C, et al. Protective effects of 20(s)-protopanaxtriol on viral myocarditis infected by coxsackievirus B3. Pathobiology 2012;79:285-9. https://doi.org/10.1159/000331229

Cited by

  1. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products vol.26, pp.5, 2016, https://doi.org/10.1007/s10068-017-0159-2
  2. Protective Effect of Panax notoginseng Root Water Extract against Influenza A Virus Infection by Enhancing Antiviral Interferon-Mediated Immune Responses and Natural Killer Cell Activity vol.8, pp.None, 2016, https://doi.org/10.3389/fimmu.2017.01542
  3. Protective roles of ginseng against bacterial infection vol.5, pp.11, 2016, https://doi.org/10.15698/mic2018.11.654
  4. Anti‐acne properties of hydrophobic fraction of red ginseng (Panax ginseng C.A. Meyer) and its active components vol.33, pp.3, 2016, https://doi.org/10.1002/ptr.6243
  5. Phenolic Compounds and Ginsenosides in Ginseng Shoots and Their Antioxidant and Anti-Inflammatory Capacities in LPS-Induced RAW264.7 Mouse Macrophages vol.20, pp.12, 2016, https://doi.org/10.3390/ijms20122951
  6. Ginseng: A Qualitative Review of Benefits for Palliative Clinicians vol.36, pp.7, 2016, https://doi.org/10.1177/1049909118822704
  7. The potential of plant systems to break the HIV‐TB link vol.17, pp.10, 2016, https://doi.org/10.1111/pbi.13110
  8. 20(S)-Ginsenoside Rg3 Promotes HeLa Cell Apoptosis by Regulating Autophagy vol.24, pp.20, 2016, https://doi.org/10.3390/molecules24203655
  9. Review on selected potential nutritional intervention for treatment and prevention of viral infections: possibility of recommending these for Coronavirus 2019 vol.23, pp.1, 2016, https://doi.org/10.1080/10942912.2020.1825483
  10. Inhibition of Herpes Simplex Viruses, Types 1 and 2, by Ginsenoside 20(S)-Rg3 vol.30, pp.1, 2020, https://doi.org/10.4014/jmb.1908.08047
  11. Ginseng integrative supplementation for seasonal acute upper respiratory infections: A systematic review and meta-analysis vol.52, pp.None, 2016, https://doi.org/10.1016/j.ctim.2020.102457
  12. Food Ingredients and Active Compounds against the Coronavirus Disease (COVID-19) Pandemic: A Comprehensive Review vol.9, pp.11, 2016, https://doi.org/10.3390/foods9111701
  13. Protective effect of panaxydol against repeated administration of aristolochic acid on renal function and lipid peroxidation products via activating Keap1‐Nrf2/ARE pathway in rat kidney vol.35, pp.1, 2016, https://doi.org/10.1002/jbt.22619
  14. Antiviral Effect of Ginsenoside Rb2 and Rb3 Against Bovine Viral Diarrhea Virus and Classical Swine Fever Virus in vitro vol.8, pp.None, 2016, https://doi.org/10.3389/fvets.2021.764909
  15. COVID-19 pandemic crisis and food safety: Implications and inactivation strategies vol.109, pp.None, 2016, https://doi.org/10.1016/j.tifs.2021.01.004
  16. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview vol.14, pp.4, 2016, https://doi.org/10.3390/ph14040381
  17. Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion vol.53, pp.5, 2016, https://doi.org/10.1038/s12276-021-00624-9
  18. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections vol.26, pp.13, 2016, https://doi.org/10.3390/molecules26134095
  19. Korean traditional foods as antiviral and respiratory disease prevention and treatments: A detailed review vol.116, pp.None, 2021, https://doi.org/10.1016/j.tifs.2021.07.037
  20. Antiinflammatory phytochemicals against virus‐induced hyperinflammatory responses: Scope, rationale, application, and limitations vol.35, pp.11, 2021, https://doi.org/10.1002/ptr.7222
  21. Role of nuclear factor-kappa B in bleomycin induced pulmonary fibrosis and the probable alleviating role of ginsenoside: histological, immunohistochemical, and biochemical study vol.54, pp.4, 2016, https://doi.org/10.5115/acb.21.068