DOI QR코드

DOI QR Code

Current Status of Titanium Smelting Technology

타이타늄 제련기술 현황

  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University) ;
  • Jung, Jae-Young (Research Institute of Industrial Science & Technology (RIST))
  • Received : 2016.05.25
  • Accepted : 2016.07.06
  • Published : 2016.08.31

Abstract

Titanium is the ninth most abundant element in the Earth's crust. It is also the forth most abundant structural metal after aluminum, iron and magnesium. Titanium is conventionally produced by the Kroll process. New processes to produce metallic titanium have been currently developed by many researchers in the world. In this study, the existing technologies, including both commercial and developmental processes, categorized into three groups: those by metallothermic reduction of $TiCl_4$ and $TiO_2$, those by electrolytic reduction of $TiO_2$ and hydrogen reduction of Ti compounds. Their mechanisms for reduction and their features are summarized and discussed in the view of industrial application.

타이타늄은 지각 구성원소 중 아홉 번째로 풍부한 원소이다. 또한 구조용 금속으로서는 알루미늄, 철, 마그네슘에 이어서 네 번째로 풍부한 원소이다. 일반적으로 이러한 타이타늄은 Kroll법에 의해 만들어지고 있다. 최근 전 세계의 많은 연구자들에 의해서 새로운 타이타늄 제련법이 개발되어 왔다. 본 연구에서는 상업화 되었거나 개발 중인 신 제련 프로세스를 $TiCl_4$의 금속 열환원법, $TiO_2$ 등의 전해환원법, 그리고 수소를 이용한 환원법으로 분류하였다. 이러한 새로운 제련 프로세스의 환원기구와 현황에 대하여 종합하고 상업화 가능성의 관점에서 정리하였다.

Keywords

References

  1. Housley, K. L., 2007: Ch. 1 A New Element, Black Sand The History of Titanium, 1st Ed., p. 1, Metal Management Aerospace, Inc., Hartford, USA.
  2. Hunter, M. A., 1910: METALLIC TITANIUM, J. Am. Chem. Soc. 32(3), pp. 330-336. https://doi.org/10.1021/ja01921a006
  3. Kroll, W., 1940: THE PRODUCTION OF DUCTILE TITANIUM, Trans. Electrochem. Soc. 78, pp. 35-47. https://doi.org/10.1149/1.3071290
  4. Kroll, W., 1955: How Commercial Titanium and Zirconium were Born, J. of The Franklin Institue 260(3), pp. 169-192. https://doi.org/10.1016/0016-0032(55)90727-4
  5. Nikami, K., Okabe, T.H. and Ono, K., 2002: Review on Titanium Refining Research, and Future Scope for Development of New Production Process, Shigen-to-Sozai 118(8), pp.529-535. https://doi.org/10.2473/shigentosozai.118.529
  6. Yoon, M. W. and Sohn, H. S., 2013: Deoxidation of Titanium Scrap by Calciothermic Reduction, J. of Korean Inst. of Resources Recycling 22(6), pp. 1-7.
  7. Nanjo, M., Mimura, K. and Sato, N., 1986: Intelligent Metallurgy of Rare Metals(I). Titanium Production(II), Bulletin of the Research Institute of Mineral Dressing and Metallurgy, Tohoku University 42(1), pp. 183-203.
  8. Ed. by Fondation Nicolas Lanners, 1998: William J. Kroll A Luxembourg Scientist, Fondation Nicolas Lanners, Luxembourg.
  9. Kosemura, S., et al., 2007: Production of Titanium Metal at Toho Titanium Co., Ltd., J. MMIJ 123(12), pp. 693-697. (www.toho-titanium.co.jp) https://doi.org/10.2473/journalofmmij.123.693
  10. Lee, J. C., Sohn, H. S. and Jung, J. Y., 2012: Effect of $TiCl_4$ Feeding Rate on the Formation of Titanium Sponge in the Kroll Process, Kor. J. Met. Mater. 50(10), pp. 745-751 https://doi.org/10.3365/KJMM.2012.50.10.745
  11. Edwin H. Kraft(EHKTechnologies), 2004: Summary of Emerging Cost Titanium Technologies, EHKTechnologies 10917 SE Burlington Dr. Vancouver.
  12. Suzuki, R. O., Teranuma, K. and Ono, K., 2003: Calciothermic Reduction of Titanium Oxide and in-situ Electrolysis in Molten $CaCl_2$, Metall. Mater. Trans. B 34B, pp. 287-295.
  13. Okabe, T. H., 2005: New smelting process of titanium, Keikinzoku 55(11), pp. 537-543.
  14. Grant Crowley, 2003: How to Extract Titanium Low-Cost, ADVANCED MATERIALS & PROCESSES, Nov., pp. 25-27.
  15. Chad Henry, 2014: CSIRO Titanium Technologies and Additive Manufacturing, www.csiro.au.
  16. Zheng, H., Ito, H. and Okabe, T. H., 2007: Production of Titanium Powder by the Calciothermic Reduction of Titanium Concentrates or Ore Using the Preform Reduction Process, Materials Trans. 48(8), pp. 2244-2251. https://doi.org/10.2320/matertrans.MER2007115
  17. George Zheng Chen, Derek J. Fray and Tom W. Farthing, 2000: Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, NATURE 407, pp.361-364. https://doi.org/10.1038/35030069
  18. Fray, D. J., 2008: Novel methods for the production of titanium, Inter. Materials Rev. 53(6), pp. 317-325. https://doi.org/10.1179/174328008X324594
  19. R. O. Suzuki, 2004: World-wide New Proposals Challenging for Titanium Preparation, Titan 52(4), pp. 281-287.
  20. Park, I., Abiko, T. and Okabe, T. H., 2005: Production of titanium powder directly from $TiO_2$ in $CaCl_2$ through an electronically mediated reaction (EMR), J. Phy. & Chem, Solid 66, pp. 410-413. https://doi.org/10.1016/j.jpcs.2004.06.052
  21. Okabe, T. H., 2005: New smelting process of titanium, Keikinzoku 55(11), pp.537-543.
  22. Tonder, W. V., 2010: SOUTH AFRICAN TITANIUM: Techno-Economic Evaluation of Alternatives to the Kroll Process, Master Thesis, Stellenbosch Univ. South Africa. p.108-111.
  23. Cardarelli, F., 2002: A method for electrowinning of titanium metal or alloy from titanium oxide containing compound in the liquid state, Patent No. WO/2003/046258. Canada.
  24. Takenaka, T. et al., 1999: The New Concept for Electrowinning Process of Liquid Titanium Metal in Molten Salt, Electrochemistry 67(6), pp. 661-668.
  25. Fang, Z. Z., Middlemas, S., Guo, J. and Fan, P., 2013: A New, Energy-Efficient Chemical Pathway for Extracting Ti Metal from Ti Minerals, J. American Chem. Soc. 135, pp. 18248-18251. https://doi.org/10.1021/ja408118x
  26. SRI International, 2015: Low-Cost Production of Titanium Alloys, www.sri.com.

Cited by

  1. The production of Titanium Powder via Hydrogen Reduction of Titanium Tetrachloride by Inductively Coupled RF plasma vol.321, pp.None, 2016, https://doi.org/10.1051/matecconf/202032107011
  2. 타이타늄의 리사이클링 기술 현황 vol.30, pp.1, 2016, https://doi.org/10.7844/kirr.2021.30.1.26
  3. 타이타늄 밀링/터닝 스크랩의 절삭공구 소재화 vol.30, pp.2, 2016, https://doi.org/10.7844/kirr.2021.30.2.61