DOI QR코드

DOI QR Code

Enzyme Metabolite Analysis Using Data Mining

데이터 마이닝을 활용한 효소 대사물의 분석

  • 정희택 (전남대학교 생명과학기술학부) ;
  • 박춘구 (전남대학교 멀티미디어전공)
  • Received : 2016.08.29
  • Accepted : 2016.10.24
  • Published : 2016.10.31

Abstract

Recently, the researches to discovery drug candidates from natural herbs have received considerable attention. In human body, enzyme mostly metabolize the compounds of natural herbs. In this study, we analysis the enzyme interactions using assoication mining. We get this data from BRENDA(: BRaunschweig ENzyme DAtabase) system. Based on enzyme interaction model, we divide the metabolites into substrate metabolites, product metabolites, inhibitor metabolites, and activating metabolites. We then compose substrate metabolite transaction, product metabolite transaction with each metabolites and enzyme interaction transaction with all metabolites. Also we take account of organism for each transactions. We mine frequent metabolites and patterns from six transactions using association rule mining. And we analysis the relationship among metabolites. As a result, we identify the distributions and patterns of metabolites consist in enzyme interactions. We found that metabolites include in only substrate are identified and have very low supports. This results can be useful to develop the effective metabolism prediction model for compounds of natural herbs.

최근 천연물로부터 신약 후보물질을 개발하려는 연구가 활발히 이루어지고 있다. 인체 내에서 천연물은 주로 효소에 의해 대사된다. 본 연구는 화합물의 인체내 대사반응과 주로 관련된 효소에 의한 대사반응의 특징을 연관규칙마이닝을 활용하여 분석한다. 화합물이 인체 내에서 효소 대사반응과 관련된 데이터를 BRENDA(: BRaunschweig ENzyme DAtabase)로부터 수집하였다. 수집된 데이터를 효소대사반응의 기본 틀에 근거하여, 대사물들을 기질대사물, 생성대사물, 억제대사물, 그리고 활성대사물들로 구분한다. 이러한 대사물들로 이루어진 기질대사물 트랜잭션, 생성대사물 트랜잭션, 그리고 모든 대사물들을 포함한 효소반응트랜잭션들을 구성하였다. 또한 종 정보를 반영한 6개의 트랜잭션들로 구성하였다. 연관규칙 마이닝을 활용하여 6개의 트랜잭션에서 빈발대사물 및 패턴을 분석하였다. 또한 대사물들 사이의 관련성을 분석하였다. 그 결과 효소대사반응에 참여하는 대사물들의 분포와 패턴을 식별할 수 있었다. 더욱이 기질에만 속하는 순수 기질대사물들을 식별하였고 이들 대부분이 아주 낮은 지지도임을 확인할 수 있었다. 연구결과는 순수 기질대사물은 효과적인 대사변환 예측 모델 개발에 활용될 수 있다.

Keywords

References

  1. A. Tarca, V. Jarey, X. Chen, R. Romero, and S. Draghici, "Machine Learning and Its Applications to Biology," J. of Public Library of Science(PLOS) Computational Biology, vol. 3, issue 6, 2007, pp. 953-963.
  2. K. Park, D. Kim, S. Ha, and D. Lee, "Predicting pharmacodynamic drug-drug interactions through signaling propagation interference on protein-protein interaction networks," J. of Public Library of Science(PLOS) ONE, vol. 10, e0140816, 2015.
  3. J. Seum, S. Yoo, and H. Nam, "Prediction of Compound-Target Interactions of Natural Products Using Large-scale Drug and Protein Information," In Proc. of the ACM Ninth Int. Workshop on Data and Text Mining in Biomedical Informatics, Melbourne, Australia, Oct. 2015, pp. 15.
  4. G. Heok and S. Hark, "Probabilistic model for bio-cells information extraction," J. of The Korea Institute of Electronic Communication Sciences, vol. 6, no. 5, 2011, pp.649-656.
  5. G. Jim and H. Lee, "The Developement of Liver cancer Vital Sign Information Prediction System using Aptamer Protein Biochip," J. of The Korea Institute of Electronic Communication Sciences, vol. 6, no. 6, 2011, pp.965-971.
  6. S. Toon and G. Kim, "Personal Biometric Identification based on ECG Features," J. of The Korea Institute of Electronic Communication Sciences, vol. 10, no. 4, 2015, pp.521-526. https://doi.org/10.13067/JKIECS.2015.10.4.521
  7. B. Kevin and Y. Yamanishi. "Supervised prediction of drug-target interactions using bipartite local models," Bioinformatics, vol. 25, issue 18, 2009, pp. 2397-2403. https://doi.org/10.1093/bioinformatics/btp433
  8. Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, and M. Kanehisa, "Prediction of drug-target interaction networks from the integration of chemical and genomic spaces," Bioinformatics, vol, 24, issues 13, 2008, pp. 232-240. https://doi.org/10.1093/bioinformatics/btn162
  9. M. Yang and U. Gwag, Drug Metabolism, Seoul, Sinilbooks, 2015.
  10. Y. Kim, Essentials of Enzymology, Seoul, Worldscience, 2015.
  11. D. Wishart, T. Jewison, A. Guo, M. Wilson, C. Knox, Y. Liu, and S. Bouatra, "HMDB 3.0 - The Human Metabolome Database in 2013," Nucleic Acids Researh, vol. 41, Issue D1, 2013, pp. 801-807. https://doi.org/10.1093/nar/gks1065
  12. A. Chang, I. Schomburg, S. Placzek, L. Jeske, and D. Schomburg, "BRENDA in 2015: exciting developments in its 25th year of existence," Nucleic Acids Research, vol. 43, Issue D1, 2015, pp. 1-8. https://doi.org/10.1093/nar/gku1303
  13. M. Hahsler, S. Chelluboina, K. Hornik, and C. Buchta, "The arules R-Package Ecosystem: Analyzing Interesting Patterns from Large Transaction Data Sets," J. of Machine Learning Research, vol. 12, no. 1, 2011, pp. 2021-2025.
  14. M. Hahsler and S. Chelluboina. "Visualizing association rules: Introduction to the R-extension package arulesViz," R project module, Dec. 2011, pp. 223-238.
  15. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene Selection for Cancer Classification using Support Vector Machines", Machine Learning, vol. 46, issue 1, 2002, pp. 389-422. https://doi.org/10.1023/A:1012487302797
  16. J. Bedo, C. Sanderson, and A. Kowalczyk, "An Efficient Alternatie to SVM Based Recursive Feature Elimination with Applications in Natural Language Processing and Bioinformatics," In Australaian Joint Conference on Artificial Intelligence, Hobart, Australia, Dec. 2006, pp. 170-180.
  17. I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. of Machine Learning Research, vol. 3, no. 1, 2003, pp. 1157-1182.