DOI QR코드

DOI QR Code

Intergranular Corrosion Mechanism of Slightly-sensitized and UNSM-treated 316L Stainless Steel

  • Lee, J.H. (Materials Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, K.T. (Materials Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Pyoun, Y.S. (Department of Mechanical Engineering, Sun Moon University) ;
  • Kim, Y.S. (Materials Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
  • Received : 2016.10.16
  • Accepted : 2016.10.24
  • Published : 2016.10.31

Abstract

316L stainless steels have been widely used in many engineering fields, because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion and stress corrosion cracking etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled by methods such as the lowering of carbon content, solution heat treatment. This work focused on the intergranular corrosion mechanism of slightly-sensitized and Ultrasonic Nano-crystal Surface Modification (UNSM)-treated 316L stainless steel. Samples were sensitized for 1, 5, and 48 hours at $650^{\circ}C$ in $N_2$ gas atmosphere. Subsequently UNSM treatments were carried out on the surface of the samples. The results were discussed on the basis of the sensitization by chromium carbide and carbon segregation, the residual stress and grain refinement. Even though chromium carbide was not precipitated, the intergranular corrosion rate of 316L stainless steel was drastically increased with aging time, and it was confirmed that the increased intergranular corrosion rate of slightly-sensitized (not carbide formed) 316L stainless steel was due to the carbon segregation along the grain boundaries. However, UNSM treatment improved the intergranular corrosion resistance of aged stainless steels, and its improvement was due to the reduction of carbon segregation and the grain refinement of the outer surface, including the introduction of compressive residual stress.

Keywords

References

  1. R. S. Dutta, P. K. De, and H. S. Gadiyar, Corros. Sci., 34, 51 (1993). https://doi.org/10.1016/0010-938X(93)90258-I
  2. Y. Asada, M. Ueta, T. Kanaoka, M. Sukekawa, and T. Nishida, Proceedings of the ASME PVP on Stress Classification, Robust Methods, and Elevated Temperature Design, 230, 61 (1992).
  3. E. C. Bain, R. H. Aborn, and J. J. B. Rutherford, Trans. of Am. Soc. Steel Treat., 21, 481 (1933).
  4. G. H. Aydogdu, and M. K. Aydinol, Corros. Sci., 48, 3565 (2006). https://doi.org/10.1016/j.corsci.2006.01.003
  5. H. Sahlaoui, K. Makhlouf, H. Sidhom, and J. Philibert, Mater. Sci. Eng. A, 372, 98 (2004). https://doi.org/10.1016/j.msea.2003.12.017
  6. V. Azar, B. Hashemi, and M. R. Yazdi, Surf. Coat. Tech., 204, 3546 (2010). https://doi.org/10.1016/j.surfcoat.2010.04.015
  7. G. Liu, S. C Wang, X. F. Lou, J. Lu, and K. Lu, Scripta Mater., 44, 1797 (2001). https://doi.org/10.1016/S1359-6462(01)00741-2
  8. P. Sanjurjo, C. Rodriguez, I. F. Pariente, F. J. Belzunce, and A. F. Canteli, Procedia Eng., 2, 1539 (2010). https://doi.org/10.1016/j.proeng.2010.03.166
  9. P. Peyre, C. Braham, J. Ledion, L. Berthe, and R. Fabbro, J. Mater. Eng. Perform., 9, 656 (2000). https://doi.org/10.1361/105994900770345520
  10. U. Trdan, and J. Grum, Corros. Sci., 59, 324 (2012). https://doi.org/10.1016/j.corsci.2012.03.019
  11. EPRI 1025839, Materials Reliability Program: Technical Basis for Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement (MRP-267, Revision 1) , EPRI (2012).
  12. A. K. Gujba, and M. Medraj, Mater., 7, 7925 (2014). https://doi.org/10.3390/ma7127925
  13. A. Telang, A. S. Gill, D. Tammana, X. Wen, M. Kumar, S. Teysseyre, S. R. Mannava, D. Qian, and V. K. Vasudevan, Mater. Sci. Eng. A, 648, 280 (2015). https://doi.org/10.1016/j.msea.2015.09.074
  14. H. S. Lee, D. S. Kim, J. S. Jung, Y. S. Pyun, and K. Shin, Corros. Sci., 51, 2826 (2009). https://doi.org/10.1016/j.corsci.2009.08.008
  15. I. I. Mukhanov, and Y. M. Golubev, Met. Sci. Heat Treat., 11, 701 (1969). https://doi.org/10.1007/BF00653162
  16. C. Ye, A. Telang, A. S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J. M. K. Wiezorek, Z. Zhou, D. Qian, S. R. Mannava, and V. K. Vasudevan, Mater. Sci. Eng. A, 613, 274 (2014). https://doi.org/10.1016/j.msea.2014.06.114
  17. T. Wang, J. Yu, and B. Dong, Surf. Coat. Tech., 200, 4777 (2006). https://doi.org/10.1016/j.surfcoat.2005.04.046
  18. W. Ye, Y. Li, and F. Wang, Electrochim. Acta, 51, 4426 (2006). https://doi.org/10.1016/j.electacta.2005.12.034
  19. O. Takakuwa and H. Soyama, Adv. Chem. Engineer. Sci., 5, 62 (2015). https://doi.org/10.4236/aces.2015.51007
  20. J. H. Lee and Y. S. Kim, Corros. Sci. Tech., 14, 313 (2015). https://doi.org/10.14773/cst.2015.14.6.313
  21. ASTM A262, Standard practices for detecting susceptibility to intergranular attack in austenitic stainless steels, ASTM (2002).
  22. A. J. Sedriks, Corrosion of Stainless Steels, 2nd ed., p. 110, Wiley, New York (1996).
  23. A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, M. Carboneras, and R. Arrabal, Acta Mater., 55, 2239 (2007). https://doi.org/10.1016/j.actamat.2006.11.021
  24. R. Steigerwald, Metallurgically Influenced Corrosion, in Metals Handbook, 9th edition, p. 123, ASM International, Metals Park, OH (1990).
  25. J. K. Kim, Y. H. Kim, J. S. Lee, and K. Y. Kim, Corros. Sci., 52, 1847 (2010). https://doi.org/10.1016/j.corsci.2010.01.037
  26. J. K. Kim, Y. H. Kim, B. H. Lee, and K. Y. Kim, Electrochim. Acta, 56, 1701 (2011). https://doi.org/10.1016/j.electacta.2010.08.042
  27. J. K. Kim, Y. H. Kim, S. H. Uhm, J. S. Lee, and K. Y. Kim, Corros. Sci., 51, 2716 (2009). https://doi.org/10.1016/j.corsci.2009.07.008
  28. J. K. Kim, B. J. Lee, B. H. Lee, Y. H. Kim, and K. Y. Kim, Scripta Mater., 61, 1133 (2009). https://doi.org/10.1016/j.scriptamat.2009.08.045
  29. M. G. Fontana, Corrosion Engineering, 3rd ed., p. 73, McGraw-Hill Book Company, New York (1986).
  30. N. M. Alanazi, A. M. El-Sherik, S. H. Alamar, and S. Shen, Int. J. of electrochem. Sci., 8, 10350 (2013).
  31. X. Zhao, P. Munroe, D. Habibi, and Z. Xie, J. of Asian Ceramic Soc., 1, 86 (2013). https://doi.org/10.1016/j.jascer.2013.03.002
  32. V. Randle, and G. Owen, Acta Mater., 54, 1777 (2006). https://doi.org/10.1016/j.actamat.2005.11.046

Cited by

  1. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel vol.10, pp.7, 2017, https://doi.org/10.3390/ma10070713
  2. 이음매 없는 304L 스테인리스강관의 부식특성에 미치는 열처리의 영향 vol.16, pp.6, 2016, https://doi.org/10.14773/cst.2017.16.6.305
  3. 8인치 직경의 304L 스테인리스강관의 부식특성에 미치는 제작공정의 영향 vol.17, pp.6, 2016, https://doi.org/10.14773/cst.2018.17.6.279
  4. The Effect of the Static Load in the UNSM Process on the Corrosion Properties of Alloy 600 vol.12, pp.19, 2019, https://doi.org/10.3390/ma12193165
  5. Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600 vol.18, pp.5, 2016, https://doi.org/10.14773/cst.2019.18.5.196
  6. Effect of Heat Treatment on the Microstructure and Corrosion Resistance of Stainless/Carbon Steel Bimetal Plate vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/1280761
  7. Corrosion Behavior of AISI 316L Stainless Steel Used as Inner Lining of Bimetallic Pipe in a Seawater Environment vol.14, pp.6, 2016, https://doi.org/10.3390/ma14061539