DOI QR코드

DOI QR Code

Effects of alloys and flow velocity on welded pipeline wall thinning in simulated secondary environment for nuclear power plants

원전 2차계통수 모사 환경에서 용접배관 감육 특성에 미치는 재료 및 유속의 영향

  • Kim, Kyung Mo (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute) ;
  • Choeng, Yong-Moo (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute) ;
  • Lee, Eun Hee (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute) ;
  • Lee, Jong Yeon (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute) ;
  • Oh, Se-Beom (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Jin (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute)
  • 김경모 (한국원자력연구원 원자력재료안전연구부) ;
  • 정용무 (한국원자력연구원 원자력재료안전연구부) ;
  • 이은희 (한국원자력연구원 원자력재료안전연구부) ;
  • 이종연 (한국원자력연구원 원자력재료안전연구부) ;
  • 오세범 (한국원자력연구원 원자력재료안전연구부) ;
  • 김동진 (한국원자력연구원 원자력재료안전연구부)
  • Received : 2016.10.18
  • Accepted : 2016.10.28
  • Published : 2016.10.31

Abstract

The pipelines and equipments are degraded by flow-accelerated corrosion (FAC), and a large-scale test facility was constructed for simulate the FAC phenomena in secondary coolant environment of PWR type nuclear power plants. Using this facility, FAC test was performed on weld pipe (carbon steel and low alloy steel) at the conditions of high velocity flow (> 10 m/s). Wall thickness was measured by high temperature ultrasonic monitoring systems (four-channel buffer rod type and waveguide type) during test period and room temperature manual ultrasonic method before and after test period. This work deals with the complex effects of flow velocity on the wall thinning in weld pipe and the test results showed that the higher flow velocity induced different increasement of wall thinning rate for the carbon steel and low alloy steel pipe.

Keywords

References

  1. D. H. Lister, L. Liu, A. Feich, M. Khatibi, W. Cook, K. Fujiwara, E. Kadoi, T. Ohira, H. Takiguchi, and S. Uchida, ICPWS XV, Berlin, Germany (2008).
  2. R. B. Dooley and V. K. Chexal, Pressure Vessel and Piping, 77, 85 (2000). https://doi.org/10.1016/S0308-0161(99)00087-3
  3. S. Uchida, M. Naitoh, Y. Uehara, H. Okada, N. Hiranuma, W. Sugino, S. Koshizuka, and D. H. Lister, J. Nuclear Science and Technology, 46, 31 (2009). https://doi.org/10.1080/18811248.2007.9711504
  4. T. Satoh, Y. Shao, W. G. Cook, D. H. Lister, and S. Uchida, Corrosion, 63, 770 (2007). https://doi.org/10.5006/1.3278426
  5. H. Schmidt, W. Kohler and W. Kastner, Framatome ANP GmbH, France (2001).
  6. E. M. Pavageau and R. Michel, Int. Conf. on FAC, Lyon, France (2008).
  7. Y. S. Lee, S. H. Lee and K. M. Hwang, Corros. Sci. Tech., 15 182 (2016). https://doi.org/10.14773/cst.2016.15.4.182
  8. E. H. Lee, K. M. Kim and H. P. Kim, Corros Sci. Tech., 12 280 (2013). https://doi.org/10.14773/cst.2013.12.6.280
  9. Y. M. Cheong, H. P. Kim and D. H. Lee, Trans. of the Korean Nuclear Society Spring Meeting, Korea (2014)
  10. Y. M. Cheong, H. N. Kim and H. P. Kim, Trans. KSNT Spring Conf., Korea (2013).
  11. L. Dejoux, M. Personz, S. Trevin and T. Knook, Int. Conf. on FAC, Lion, France (2010).