DOI QR코드

DOI QR Code

A Field Study on the Constructability and Performance Evaluation of Waveform Micropile

현장시험을 통한 파형 마이크로파일의 시공성 및 거동 평가

  • Jang, Young-Eun (Dept. of Geospace Engrg., Univ. of Science & Technology) ;
  • Han, Jin-Tae (Dept. of Geotechnical Engrg., Korea Institute of Civil Engrg. and Building Technology, UST)
  • 장영은 (과학기술연합대학원대학교 지반신공간공학과) ;
  • 한진태 (한국건설기술연구원 지반연구소)
  • Received : 2016.09.06
  • Accepted : 2016.10.17
  • Published : 2016.10.31

Abstract

Waveform micropile is an advanced construction method that combined the concept of conventional micropile with jet grouting method. This new form of micropile was developed to improve frictional resistance, which consequently leads to achieving higher bearing capacity and cost efficiency. Two field tests were conducted to examine the field applicability as well as to verify the effects of bearing capacity enhancement. In particular, waveform micropile construction using jet grouting method was performed to evaluate the viability of waveform micropile installation. After testing, the surrounding ground was excavated to check the accomplishment on the shape of waveform micropile. The result showed that waveform micropile can be installed by adjusting the grouting time and pressure. In the loading tests, waveform micropile's bearing capacity increased by 1.4 to 2.3 times depending on their shapes when compared with conventional micropile. Overall results clearly demonstrated that waveform micropile is an enhanced construction method that can improve bearing capacity.

파형 마이크로파일은 기존 마이크로파일과 제트 그라우팅 공법을 접목하여 그라우트체를 파형의 형상으로 시공하는 공법으로, 파형 구근에 의한 마찰저항 성능을 높여 마이크로파일의 지지력 및 경제성을 개선하기 위해 개발되었다. 본 연구에서는 파형 마이크로파일의 시공 타당성 및 지지성능 개선 효과를 검증하기 위해 총 2회의 현장시험을 수행하였다. 파형 마이크로파일의 시공성 분석을 위해 제트 그라우팅 공법을 활용하여 시간 및 압력 조절을 통한 파형 그라우트 형성 실험을 수행하고 지중 말뚝 굴착을 통해 파형 형성 여부를 확인하였다. 확인 결과, 제트 그라우팅의 압력 및 시간 조절을 통해 파형 마이크로파일의 요구 형상을 적절히 시공할 수 있는 것을 확인하였으며, 하중재하시험 결과에서는 전단키가 없는 마이크로파일과 비교해 파형 마이크로파일의 지지력이 형상에 따라 1.4 배에서 2.3배까지 증가해 파형 마이크로파일의 지지력 개선효과가 우수한 것으로 나타났다.

Keywords

References

  1. ASTM D 1143-81. (2007), Standard test method for piles deep foundations under static axial compressive load, Annual book of ASTM Standards.
  2. Abd Elaziz, A. Y. and El Naggar, M. H. (2014), "Geotechnical Capacity of Hollow-bar Micropiles in Cohesive Soils", Canadian Geotechnical Journal, Vol.51, No.10, pp.1123-1138. https://doi.org/10.1139/cgj-2013-0408
  3. Akbas, S. O. and Kulhawy, F. H. (2009), "Axial Compression of Footings in Cohesionless Soils. I: Load-settlement behavior", Journal of Geotechnical and Geoenvironmental Engineering, Vol.135, No.11, pp.1562-1574. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000135
  4. Bell, A. L. (1993), Jet grouting-Ground Improvement, Ed. Moseley, E.D., Chapman & Hall, Glasgow, pp.149-174.
  5. Cai, L., Li, Y., and Zhou, H. (2006), "Discussion on the Bearing Capacity of a Bored Pile with Reamed Enlargements", Foundation Analysis and Design: Innovative Methods, pp.137-144, ASCE.
  6. Castelli, F. and Maugeri, M. (2002), "Simplified Nonlinear Analysis for Settlement Prediction of Pile Groups", Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.1, pp.76-84. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(76)
  7. Covil, C. S. and Skinner, A. E. (1994), "Jet Grouting - A Review of Some of the Operating Parameters that from the Basis of the Jet Grouting Process", Proc. of Grouting in the Ground, Ed. Bell, A. A., Thomas Telford, London, UK, pp.605-629.
  8. Coyle, H. M. and Castello, R. R. (1981), "New Design Correlations for Piles in Sand", Journal of the Geotechnical and Geoenvironmental Engineering, Vol.107 (ASCE 16379).
  9. FHWA. (2005), Micropile Design and Construction: Reference Manual, FHWA-NHI-05-039, Federal Highway Administration, Vol.1, No.1, pp.7-28.
  10. Gomez, J., Cadden, A., and Bruce, D.A. (2003), "Micropiles Founded in Rock: Development and Evolution of Bond Stresses under Repeated Loading", Proc. of the 12th Pan-American Conferemce on Soil Mechanics and Geotechnical Engineering, Germany, pp. 1911-1916.
  11. Han, J. and Ye, S. L. (2006), "A Field Study on the behavior of Micropiles in Clay under Compression or Tension", Canadian Geotechnical Journal, Vol.43, No.1, pp.19-29. https://doi.org/10.1139/t05-089
  12. Han, J. T., Kim, S. R., Jang, Y. E., and Lee, S. H. (2013), "Evaluation of Bearing Capacity of Waveform Micropile by Numerical Analyses", Journal of the Korea Academia-Industrial cooperation Society, Vol.14, No.11, pp.5906-5914 (in Korean). https://doi.org/10.5762/KAIS.2013.14.11.5906
  13. Huang, Y., Hajduk, E. L., Lipka, D. S., and Adams, J. C. (2007), "Micropile Load Testing and Installation Monitoring at the CATS Vehicle Maintenance Facility", Contemporary Issues In Deep Foundations, ASCE, pp.1-10.
  14. Janbu, N. (1976), Static bearing capacity of friction piles, In Sechste Europaeische Konferenz Fuer Bodenmechanik Und Grundbau, Vol.1.
  15. Jang, Y.E. and Han, J.T. (2015), "Study of Load Capacity of Waveform Micropile by Centrifuge Test", Proc. of the 25th International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, pp.700-706.
  16. Jeon, S. S. (2004), "Interpretation of Load Tests on Minipiles", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, Vol. 157, No. 2, pp. 85-90. https://doi.org/10.1680/geng.2004.157.2.85
  17. Jung, S. J., Lee, S. I., Jeon, J. W., and Kim, M. M. (2009), "Prediction of Ultimate Load of Drilled Shafts Embedded in Weathered Rock by Extrapolation Method" Journal of The Korean Society of Civil Engineers, Vol.29, No.4C, pp.145-151.
  18. Juran, I., Benslimane, A., and Hanna, S. (2001), Engineering analysis of dynamic behavior of micropile systems, Transportation Research Record, Vol.1772, pp.91-106. https://doi.org/10.3141/1772-11
  19. KSF-2445. (2012), Standard Method of Testing Piles Under Axial Compressiove Load, Korean Agency for Technology and Standards, Seoul, Korea.
  20. Martin, R. E. and DeStephen, R. A. (1983), "Large Diameter Double Underreamed Drilled Shafts", Journal of Geotechnical Engineering, Vol.109, No.8, pp.1082-1098. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:8(1082)
  21. Meyerhof, G. G. (1976), "Bearing Capacity of Settlement of Pile Foundations", Journal of Geotechnical and Geoenvironmental Engineering, Vol.102 (ASCE 1962), pp.195-228.
  22. Misra, A. and Chen, C.H. (2004), "Analytical Slution for Micropile Design under Tension and Compression", Geotechnical & Geological Engineering, Vol.22, No.2, pp.199-225. https://doi.org/10.1023/B:GEGE.0000018356.85647.79
  23. Paikowsky, S. G. and Tolosko, T. A. (1999), Extrapolation of pile capacity from non-failed load tests, Federal Highway Administration, Report No. FHWA-RD-99-170, Washington, D. C.
  24. Qian, Y., Wang, J., and Wang, R. (2015), "The Analysis of the Vertical Uplift Bearing Capacity of Single CEP Pile", Open Civil Engineering Journal, Vol.9, pp.598-601. https://doi.org/10.2174/1874149501509010598
  25. Sabatini P. J., Pass, D. G., and Bachus, R. C. (1999), Geotechnical engineering circular no.4 ground anchors and anchored system, No. FHWA-SA-99-015.
  26. Sadek, M. and Isam, S. (2004), "Three-dimensional Finite Element Analysis of the Seismic behavior of Inclined Micropiles", Soil Dynamics and Earthquake Engineering, Vol.24, No.6, pp.473-485. https://doi.org/10.1016/j.soildyn.2004.02.002
  27. Seo, H., Prezzi, M., and Salgado, R. (2013), "Instrumented Static Load Test on Rock-socketed Micropile", Journal of Geotechnical and Geoenvironmental Engineering, Vol.139, No.12, pp.2037-2047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000946
  28. Tsukada, K., Miura, Y., Tsubokawa, Y., and Otani, G.L. (2006), "Mechanism of Bearing Capacity of Spread Footings Reinforced with Micropiles", Soils and Foundations, Vol.46, No.3, pp.367-376. https://doi.org/10.3208/sandf.46.367
  29. Valentino, R. and Stevanoni, D. (2010), "Micropiles Made of Reinforced Polyurethane Resins: Load Tests and Evaluation of the Bearing Capacity", Electronic Journal of Geotechnical Engineering, Vol.15, pp.895-912.
  30. Vesic, A. S. (1977), Design of Pile Foundations, National Cooperative Highway Research Program Synthesis of Practice No. 42, Transportation Research Board, Washington, DC (1977): pp.32-48.
  31. You, G. L., Miura, K., and Ishito, M. (2003), "Behavior of Micropile Foundation under Inclined Loads in Laboratory Tests", Journal of Lowland Technology International, Vol.5, No.2, pp. 16-26.
  32. Zhang, Q. Q. and Zhang, Z. M. (2012), "Simplified Calculation Approach for Settlement of Single Pile and Pile Groups", Journal of Computing in Civil Engineering, Vol.26, No.6, pp.750-758. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000167

Cited by

  1. 쐐기수평력을 도입한 무그라우팅 선단압축 마이크로파일의 지지력 특성에 관한 연구 vol.34, pp.3, 2016, https://doi.org/10.7843/kgs.2018.34.3.67
  2. 근입조건에 따른 마이크로파일의 거동특성 vol.21, pp.6, 2016, https://doi.org/10.14481/jkges.2020.21.6.19
  3. 현장 재하시험을 통한 수직증축시 기존 말뚝과 보강 말뚝의 강성에 따른 하중분담거동 분석 vol.36, pp.8, 2020, https://doi.org/10.7843/kgs.2020.36.8.61